AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (19.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

A Non-Redundant Benchmark for Symmetric Protein Docking

Institute of Biophysics, Huazhong University of Science and Technology, Wuhan 430074, China.
Show Author Information

Abstract

Symmetric proteins play important roles in many biological processes, such as signal transduction and molecular transportation. Therefore, determining the symmetric oligomeric structure of subunits is crucial to investigate the molecular mechanism of the related processes. Due to the high cost and technical difficulties associated with many experimental methods, computational approaches, such as molecular docking, have played an important complementary role in the determination of symmetric complex structures, in which a benchmark data set is pressingly needed. In the present work, we develop a comprehensive and non-redundant benchmark for symmetric protein docking based on the structures in the Protein Data Bank (PDB). The diverse dataset consists of 251 targets, including 212 cases with cyclic groups symmetry, 35 cases with dihedral groups symmetry, 3 cases with cubic groups symmetry, and 1 case with helical symmetry. According to the conformational changes in the interface between bound and unbound structures, the 251 targets were classified into three groups: 176 "easy", 37 "medium", and 38 "difficult" cases. A preliminary docking test on the targets of cyclic groups symmetry with M-ZDOCK indicated that symmetric multimer docking remains challenging. The benchmark will be beneficial for the development of symmetric protein docking algorithms. The proposed benchmark data set is available for download at http://huanglab.phys.hust.edu.cn/SDBenchmark/.

References

[1]
Y. Kosmann-Schwarzbach, The Noether Theorems. New York, NY, USA: Springer, 2011, pp. 55-64.
[2]
D. S. Goodsell and A. J. Olson, Structural symmetry and protein function, Ann. Rev. Biophys. Biomol. Struct., vol. 29, no. 1, pp. 105-153, 2000.
[3]
I. A. Vakser, Protein-protein docking: From interaction to interactome, Biophys. J., vol. 107, no. 8, pp. 1785-1793, 2014.
[4]
G. Waksman and C. Sansom, Introduction: Proteomics and protein-protein interactions: Biology, chemistry, bioinformatics, and drug design, in Proteomics and Protein-Protein Interactions, G. Waksman, ed. Boston, MA, USA: Springer, 2005, pp. 1-18.
[5]
S. Y. Huang, Search strategies and evaluation in protein-protein docking: Principles, advances and challenges, Drug Discov. Today, vol. 19, no. 8, pp. 1081-1096, 2014.
[6]
R. J. Bienstock, Computational drug design targeting protein-protein interactions, Curr. Pharm. Des., vol. 18, no. 9, pp. 1240-1254, 2012.
[7]
Y. M. Yan, Z. Y. Wen, X. X. Wang, and S. Y. Huang, Addressing recent docking challenges: A hybrid strategy to integrate template-based and free protein-protein docking, Proteins, vol. 85, no. 3, pp. 497-512, 2017.
[8]
B. Pierce, W. Tong, and Z. Weng, M-ZDOCK: A grid-based approach for Cn symmetric multimer docking, Bioinformatics, vol. 21, no. 8, pp. 1472-1478, 2004.
[9]
B. G. Pierce, K. Wiehe, H. Hwang, B. H. Kim, T. Vreven, and Z. P. Weng, ZDOCK server: Interactive docking prediction of protein-protein complexes and symmetric multimers, Bioinformatics, vol. 30, no. 12, pp. 1771-1773, 2014.
[10]
I. André, P. Bradley, C. Wang, and D. Baker, Prediction of the structure of symmetrical protein assemblies, Proc. Natl. Acad. Sci. USA, vol. 104, no. 45, pp. 17656-17661, 2007.
[11]
D. Schneidman-Duhovny, Y. Inbar, R. Nussinov, and H. J. Wolfson, PatchDock and SymmDock: Servers for rigid and symmetric docking, Nucleic Acids Res., vol. 33, pp. 363-367, 2005.
[12]
D. Schneidman-Duhovny, Y. Inbar, R. Nussinov, and H. J. Wolfson, Geometry-based flexible and symmetric protein docking, Proteins, vol. 60, no. 2, pp. 224-231, 2005.
[13]
M. Baek, T. Park, L. Heo, C. Park, and C. Seok, GalaxyHomomer: A web server for protein homo-oligomer structure prediction from a monomer sequence or structure, Nucleic Acids Res., vol. 45, no. 1, pp. 320-324, 2017.
[14]
I. A. Vakser, Evaluation of GRAMM low-resolution docking methodology on the hemagglutinin-antibody complex, Proteins, vol. 29, no. 1, pp. 226-230, 1997.
[15]
C. Dominguez, R. Boelens, and A. M. J. J. Bonvin, HADDOCK: A protein-protein docking approach based on biochemical or biophysical information, J. Am. Chem. Soc., vol. 125, no. 7, pp. 1731-1737, 2003.
[16]
D. W. Ritchie and G. J. L. Kemp, Protein docking using spherical polar Fourier correlations, Proteins, vol. 39, no. 2, pp. 178-194, 2000.
[17]
M. Zacharias, Protein-protein docking with a reduced protein model accounting for side-chain flexibility, Protein Sci., vol. 12, no. 6, pp. 1271-1282, 2003.
[18]
M. Torchala, I. H. Moal, R. A. G. Chaleil, J. Fernandez-Recio, and P. A. Bates, SwarmDock: A server for flexible proteinprotein docking, Bioinformatics, vol. 29, no. 6, pp. 807-809, 2013.
[19]
D. Kozakov, D. R. Hall, B. Xia, K. A. Porter, D. Padhorny, C. Yueh, D. Beglov, and S. Vajda, The ClusPro web server for protein-protein docking, Nat. Protoc., vol. 12, no. 2, pp. 255-278, 2017.
[20]
T. M. Cheng, T. L. Blundell, and J. Fernandez-Recio, pyDock: Electrostatics and desolvation for effective scoring of rigid-body protein-protein docking, Proteins, vol. 68, no. 2, pp. 503-515, 2007.
[21]
Y. M. Yan, D. Zhang, P. Zhou, B. T. Li, and S. Y. Huang, HDOCK: A web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy, Nucleic Acids Res., vol. 45, no. 1, pp. 365-373, 2017.
[22]
Y. Yan, H. Tao, and S. Y. Huang, HSYMDOCK: A docking web server for predicting the structure of protein homo-oligomers with Cn or Dn symmetry, Nucleic Acids Res., vol. 46, no. 1, pp. 423-431, 2018.
[23]
J. Janin, K. Henrick, J. Moult, L. T. Eyck, M. J. Sternberg, S. Vajda, I. Vakser, and S. J. Wodak, Critical assessment of predicted interactions, Proteins, vol. 52, no. 1, pp. 2-9, 2003.
[24]
J. B. Jr. Dunbar, R. D. Smith, C. Y. Yang, P. M. Ung, K. W. Lexa, N. A. Khazanov, J. A. Stuckey, S. M. Wang, and H. A. Carlson, CSAR benchmark exercise of 2010: Selection of the protein-ligand complexes, J. Chem. Inf. Model., vol. 51, no. 9, pp. 2036-2046, 2011.
[25]
S. Y. Huang and X. Q. Zou, A non-redundant structure dataset for benchmarking protein-RNA computational docking, J. Comput. Chem., vol. 34, no. 4, pp. 311-318, 2013.
[26]
H. Hwang, T. Vreven, J. Janin, and Z. P. Weng, Protein-protein docking benchmark version 4.0, Proteins, vol. 78, no. 15, pp. 3111-3114, 2010.
[27]
T. Vreven, I. H. Moal, A. Vangone, B. G. Pierce, P. L. Kastritis, M. Torchala, R. Chaleil, B. Jiménez-García, P. A. Bates, J. Fernandez-Recio, et al., Updates to the integrated protein-protein interaction benchmarks: Docking benchmark version 5 and affinity benchmark version 2, J. Mol. Biol., vol. 427, no. 19, pp. 3031-3041, 2015.
[28]
S. Y. Liu, Y. Gao, and I. A. Vakser, DOCKGROUND protein-protein docking decoy set, Bioinformatics, vol. 24, no. 22, pp. 2634-2635, 2008.
[29]
I. Anishchenko, P. J. Kundrotas, A. V. Tuzikov, and I. A. Vakser, Protein models docking benchmark 2, Proteins, vol. 83, no. 5, pp. 891-897, 2015.
[30]
H. M. Berman, J. Westbrook, Z. K. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne, The protein data bank, Nucleic Acids Res., vol. 28, no. 1, pp. 235-242, 2000.
[31]
A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, SCOP: A structural classification of proteins database for the investigation of sequences and structures, J. Mol. Biol., vol. 247, no. 4, pp. 536-540, 1995.
[32]
L. Lo Conte, S. E. Brenner, T. J. P. Hubbard, C. Chothia, and A. G. Murzin, SCOP database in 2002: Refinements accommodate structural genomics, Nucleic Acids Res., vol. 30, no. 1, pp. 264-267, 2002.
[33]
C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, and T. L. Madden, BLAST+: Architecture and applications, BMC Bioinformatics, vol. 10, p. 421, 2009.
[34]
E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, UCSF Chimera—A visualization system for exploratory research and analysis, J. Comput. Chem., vol. 25, no. 13, pp. 1605-1612, 2004.
[35]
Y. Zhang and J. Skolnick, Scoring function for automated assessment of protein structure template quality, Proteins, vol. 57, no. 4, pp. 702-710, 2004.
[36]
Y. M. Yan and S. Y. Huang, RRDB: A comprehensive and non-redundant benchmark for RNA-RNA docking and scoring, Bioinformatics, vol. 34, no. 3, pp. 453-458, 2018.
[37]
R. Méndez, R. Leplae, M. F. Lensink, and S. J. Wodak, Assessment of CAPRI predictions in rounds 3-5 shows progress in docking procedures, Proteins, vol. 60, no. 2, pp. 150-169, 2005.
[38]
M. F. Lensink, R. Méndez, and S. J. Wodak, Docking and scoring protein complexes: CAPRI 3rd edition, Proteins, vol. 69, no. 4, pp. 704-718, 2007.
Big Data Mining and Analytics
Pages 92-99
Cite this article:
Yan Y, Huang S-Y. A Non-Redundant Benchmark for Symmetric Protein Docking. Big Data Mining and Analytics, 2019, 2(2): 92-99. https://doi.org/10.26599/BDMA.2018.9020035

883

Views

32

Downloads

7

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 14 July 2018
Accepted: 10 October 2018
Published: 14 May 2019
© The author(s) 2019
Return