AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Copy-Move Forgery Verification in Images Using Local Feature Extractors and Optimized Classifiers

University College of Engineering, JNTU Kakinada, Kakinada 533003, India.
Department of ECE, JNTUK UCE, Vizianagaram 535003, India.
Show Author Information

Abstract

Passive image forgery detection methods that identify forgeries without prior knowledge have become a key research focus. In copy-move forgery, the assailant intends to hide a portion of an image by pasting other portions of the same image. The detection of such manipulations in images has great demand in legal evidence, forensic investigation, and many other fields. The paper aims to present copy-move forgery detection algorithms with the help of advanced feature descriptors, such as local ternary pattern, local phase quantization, local Gabor binary pattern histogram sequence, Weber local descriptor, and local monotonic pattern, and classifiers such as optimized support vector machine and optimized NBC. The proposed algorithms can classify an image efficiently as either copy-move forged or authenticated, even if the test image is subjected to attacks such as JPEG compression, scaling, rotation, and brightness variation. CoMoFoD, CASIA, and MICC datasets and a combination of CoMoFoD and CASIA datasets images are used to quantify the performance of the proposed algorithms. The proposed algorithms are more efficient than state-of-the-art algorithms even though the suspected image is post-processed.

References

[1]
H. Farid, Image forgery detection, IEEE Signal Processing Magazine, vol. 26, no. 2, pp. 1625, 2009.
[2]
M. Kumar and S. Srivastava, Image forgery detection based on physics and pixels: A study, Australian Journal of Forensic Sciences, vol. 51, no. 2, pp. 119134, 2019.
[3]
M. Asikuzzaman and M. R. Pickering, An overview of digital video watermarking, IEEE Transactions on Circuits and Systems for Video Technology, vol. 28, no. 9, pp. 21312153, 2018.
[4]
K. Jung, A survey of reversible data hiding methods in dual images, IETE Technical Review, vol. 33, no. 4, pp. 441452, 2016.
[5]
X. Lin, J. H. Li, S. L. Wang, A. W. C. Liew, F. Cheng, and X. S. Huang, Recent advances in passive digital image security forensics: A brief review, Engineering, vol. 4, no. 1, pp. 2939, 2018.
[6]
T. Qazi, K. Hayat, S. U. Khan, S. A. Madani, I. A. Khan, J. Kołodziej, H. Li, W. Lin, K. C. Yow, and C. -Z. Xu, Survey on blind image forgery detection, IET Image Processing, vol. 7, no. 7, pp. 660670, 2013.
[7]
M. Kumar and S. Srivastava, Identifying photo forgery using lighting elements, Indian Journal of Science and Technology, .
[8]
M. Kumar, S. Srivastava, and N. Uddin, Forgery detection using multiple light sources for synthetic images, Australian Journal of Forensic Sciences, .
[9]
M. Kumar and S. Srivastava, Image authentication by assessing manipulations using illumination, Multimedia Tools and Applications, .
[10]
B. Soni, P. K. Das, and D. M. Thounaojam, CMFD: A detailed review of block based and key feature based techniques in image copy-move forgery detection, IET Image Processing, vol. 12, no. 2, pp. 167178, 2018.
[11]
S. Teerakanok and T. Uehara, Copy-move forgery detection: A state-of-the-art technical review and analysis, IEEE Access, .
[12]
S. B. G. T. Babu and C. S. Rao, An optimized technique for copy-move forgery localization using statistical features, ICT Express, .
[13]
D. Cozzolino, D. Gragnaniello, and L. Verdoliva, Image forgery detection based on the fusion of machine learning and block-matching methods, arXiv preprint arXiv: 1311.6934, 2013.
[14]
B. Chen, M. Yu, Q. Su, H. J. A. E. Shim, and Y. Shi, Fractional quaternion Zernike moments for robust color image copy-move forgery detection, IEEE Access, vol. 6, pp. 5663756646, 2018.
[15]
C. S. Rao and S. B. G. T. Babu, Image authentication using local binary pattern on the low frequency components, Lecture Notes in Electrical Engineering, vol. 372, pp. 529537, 2016.
[16]
Y. Li and J. Zhou, Fast and effective image copy-move forgery detection via hierarchical feature point matching, IEEE Transactions on Information Forensics and Security, vol. 14, no. 5, pp. 13071322, 2019.
[17]
H. Y. Yang, S. R. Qi, Y. Niu, P. P. Niu, and X. Y. Wang, Copy-move forgery detection based on adaptive keypoints extraction and matching, Multimedia Tools and Applications, .
[18]
A. C. Popescu and H. Farid, Exposing digital forgeries by detecting duplicated image regions, https://farid.berkeley.edu/downloads/publications/tr04.pdf, 2022.
[19]
K. M. Hosny, H. M. Hamza, and N. A. Lashin, Copy-for-duplication forgery detection in colour images using QPCETMs and sub-image approach, IET Image Processing, vol. 13, no. 9, pp. 14371446, 2019.
[20]
R. Dixit, R. Naskar, and S. Mishra, Blur-invariant copy-move forgery detection technique with improved detection accuracy utilising SWT-SVD, IET Image Processing, vol. 11, no. 5, pp. 301309, 2017.
[21]
S. A. Thajeel, A. S. Mahmood, W. R. Humood, and G. Sulong, Detection copy-move forgery in image via quaternion polar harmonic transforms, KSII Transactions on Internet and Information Systems, .
[22]
K. B. Meena and V. Tyagi, A copy-move image forgery detection technique based on Gaussian-Hermite moments, Multimedia Tools and Applications, vol. 78, no. 23, pp. 3350533526, 2019.
[23]
G. Ramu and S. B. G. T. Babu, Image forgery detection for high resolution images using SIFT and RANSAC algorithm, in Proc. 2017 2nd International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 2017, pp. 850854.
[24]
P. Selvaraj and M. Karuppiah, Enhanced copy-paste forgery detection in digital images using scale-invariant feature transform, IET Image Processing, vol. 14, no. 3, pp. 462471, 2020.
[25]
F. M. Al_azrak, Z. F. Elsharkawy, A. S. Elkorany, G. M. E. Banby, M. I. Dessowky, and F. E. A. El-Samie, Copy-move forgery detection based on discrete and SURF transforms, Wireless Personal Communications, vol. 110, no. 1, pp. 503530, 2020.
[26]
C. Wang, Z. Zhang, Q. Li, and X. Zhou, An image copy-move forgery detection method based on SURF and PCET, IEEE Access, vol. 7, pp. 170032170047, 2019.
[27]
G. Muhammad, M. H. Al-Hammadi, M. Hussain, and G. Bebis, Image forgery detection using steerable pyramid transform and local binary pattern, Machine Vision and Applications, vol. 25, no. 4, pp. 985995, 2014.
[28]
S. B. G. T. Babu and C. S. Rao, Texture and steerability based image authentication, in Proc. 2016 11th International Conference on Industrial and Information Systems (ICIIS), Roorkee, India, 2016, pp. 154159.
[29]
G. Muhammad, M. H. Al-Hammadi, M. Hussain, A. M. Mirza, and G. Bebis, Copy move image forgery detection method using steerable pyramid transform and texture descriptor, in Proc. IEEE EuroCon 2013, Zagreb, Croatia, 2013, pp. 15861592.
[30]
T. Ojala, M. Pietikäinen, and T. Mäenpää, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971987, 2002.
[31]
T. H. Rassem and B. E. Khoo, Completed local ternary pattern for rotation invariant texture classification, The Scientific World Journal, .
[32]
X. Tan and B. Triggs, Enhanced local texture feature sets for face recognition under difficult lighting conditions, IEEE Transactions on Image Processing, vol. 19, no. 6, pp. 16351650, 2010.
[33]
Y. Xiao, Z. Cao, L. Wang, and T. Li, Local phase quantization plus: A principled method for embedding local phase quantization into Fisher vector for blurred image recognition, Information Sciences, vol. 420, pp. 7795, 2017.
[34]
W. Zhang, S. Shan, W. Gao, X. Chen, and H. Zhang, Local Gabor binary pattern histogram sequence (LGBPHS): A novel non-statistical model for face representation and recognition, in Proc. Tenth IEEE International Conference on Computer Vision volume 1, Beijing, China, 2005, pp. 786791.
[35]
A. R. Rivera, J. R. Castillo, and O. Chae, Local directional texture pattern image descriptor, Pattern Recognition Letters, vol. 51, pp. 94100, 2015.
[36]
M. S. Islam and S. Auwatanamo, Facial expression recognition using local arc pattern, Trends in Applied Sciences Research, vol. 9, no. 2, pp. 113120, 2014.
[37]
J. Chen, S. Shan, C. He, G. Zhao, M. Pietikäinen, X. Chen, and W. Gao, WLD: A robust local image descriptor, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 9, pp. 17051720, 2010.
[38]
G. Suresh and C. S. Rao, Copy move forgery detection using GLCM based statistical features, International Journal on Cybernetics & Informatics, vol. 5, no. 4, pp. 165171, 2016.
[39]
E. P. Simoncelli and W. T. Freeman, The steerable pyramid: A flexible architecture for multi-scale derivative computation, in Proc. IEEE International Conference on Image Processing, Washington, DC, USA, 1995, pp. 444447.
[40]
H. Zhu, L. Yu, Y. Zhang, L. Cheng, Z. Zhu, J. Song, J. Zhang, B. Luo, and K. Yang, Optimized support vector machine assisted BOTDA for temperature extraction with accuracy enhancement, IEEE Photonics Journal, vol. 12, no. 1, pp. 114, 2020.
[41]
A. Messac, Optimization in Practice with MATLAB®. Cambridge, UK: Cambridge University Press, 2015.
[42]
L. Kuncheva and Z. Hoare, Error-dependency relationships for the Naïve Bayes classifier with binary features, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 4, pp. 735740, 2008.
[43]
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. New York, NY, USA: Springer, 2014.
[44]
CASIA: Image tampering detection evaluation database, http://forensics.idealtest.org, 2010.
[45]
CoMoFoD - Image database for copy-move forgery detection, http://www.vcl.fer.hr/comofod/, 2019.
[46]
Image and Communication Laboratory, MICC_copy-move forgery detection and localization, http://lci.micc.unifi.it/labd/2015/01/copy-move-forgery-detection-and-localization/, 2019.
[47]
O. M. Al-Qershi and B. E. Khoo, Evaluation of copy-move forgery detection: Datasets and evaluation metrics, Multimedia Tools and Applications, vol. 77, no. 24, pp. 3180731833, 2018.
[48]
A. Rani, A. Jain, and M. Kumar, Identification of copy-move and splicing based forgeries using advanced SURF and revised template matching, Multimedia Tools and Applications, vol. 80, no. 16, pp. 2387723898, 2021.
[49]
K. M. Hosny, H. M. Hamza, and N. A. Lashin, Copy-move forgery detection of duplicated objects using accurate PCET moments and morphological operators, Imaging Science Journal, .
Big Data Mining and Analytics
Pages 347-360
Cite this article:
Babu SBGT, Rao CS. Copy-Move Forgery Verification in Images Using Local Feature Extractors and Optimized Classifiers. Big Data Mining and Analytics, 2023, 6(3): 347-360. https://doi.org/10.26599/BDMA.2022.9020029

853

Views

101

Downloads

58

Crossref

4

Web of Science

57

Scopus

0

CSCD

Altmetrics

Received: 02 March 2022
Revised: 27 June 2022
Accepted: 25 July 2022
Published: 07 April 2023
© The author(s) 2023.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return