AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (13.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Identification of Proteins and Genes Associated with Hedgehog Signaling Pathway Involved in Neoplasm Formation Using Text-Mining Approach

Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow 119121, Russia
Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow 119121, Russia, and also with Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow 117997, Russia
Show Author Information

Abstract

Analysis of molecular mechanisms that lead to the development of various types of tumors is essential for biology and medicine, because it may help to find new therapeutic opportunities for cancer treatment and cure including personalized treatment approaches. One of the pathways known to be important for the development of neoplastic diseases and pathological processes is the Hedgehog signaling pathway that normally controls human embryonic development. Systematic accumulation of various types of biological data, including interactions between proteins, regulation of genes transcription, proteomics, and metabolomics experiments results, allows the application of computational analysis of these big data for identification of key molecular mechanisms of certain diseases and pathologies and promising therapeutic targets. The aim of this study is to develop a computational approach for revealing associations between human proteins and genes interacting with the Hedgehog pathway components, as well as for identifying their roles in the development of various types of tumors. We automatically collect sets of abstract texts from the NCBI PubMed bibliographic database. For recognition of the Hedgehog pathway proteins and genes and neoplastic diseases we use a dictionary-based named entity recognition approach, while for all other proteins and genes machine learning method is used. For association extraction, we develop a set of semantic rules. We complete the results of the text analysis with the gene set enrichment analysis. The identified key pathways that may influence the Hedgehog pathway and their roles in tumor development are then verified using the information in the literature.

Electronic Supplementary Material

Download File(s)
BDMA-2022-0204_ESM.pdf (633.8 KB)

References

[1]

H. Le, R. Kleinerman, O. Z. Lerman, D. Brown, R. Galiano, G. C. Gurtner, S. M. Warren, J. P. Levine, and P. B. Saadeh, Hedgehog signaling is essential for normal wound healing, Wound Repair Regen., vol. 16, no. 6, pp. 768–773, 2008.

[2]

G. B. Carballo, J. R. Honorato, G. P. F. de Lopes, and T. C. L. de Sampaio e Spohr, A highlight on Sonic hedgehog pathway, Cell Commun. Signal., vol. 16, no. 1, pp. 11, 2018.

[3]

M. G. Smelkinson, The hedgehog signaling pathway emerges as a pathogenic target, J. Dev. Biol., vol. 5, no. 4, pp. 14, 2017.

[4]

E. Dessaud, A. P. McMahon, and J. Briscoe, Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network, Development, vol. 135, no. 15, pp. 2489–2503, 2008.

[5]

S. S. Choi, S. Bradrick, G. Qiang, A. Mostafavi, G. Chaturvedi, S. A. Weinman, A. M. Diehl, and R. Jhaveri, Up-regulation of Hedgehog pathway is associated with cellular permissiveness for hepatitis C virus replication, Hepatology, vol. 54, no. 5, pp. 1580–1590, 2011.

[6]

J. Fan, X. Zeng, Y. Li, S. Wang, P. Yang, Z. Cao, Z. Wang, P. Song, X. Mei, and D. Ju, A novel therapeutic approach against B-cell non-Hodgkin’s lymphoma through co-inhibition of Hedgehog signaling pathway and autophagy, Tumor Biol., vol. 37, no. 6, pp. 7305–7314, 2016.

[7]

R. Teperino, F. Aberger, H. Esterbauer, N. Riobo, and J. A. Pospisilik, Canonical and non-canonical Hedgehog signalling and the control of metabolism, Semin. Cell Dev. Biol., vol. 33, pp. 81–92, 2014.

[8]

P. Niewiadomski, S. M. Niedzióa, Markiewicz, T. Uki, B. Baran, and K. Chojnowska, Gli Proteins: Regulation in development and cancer, Cells, vol. 8, no. 2, pp. 147, 2019.

[9]

J. Wu, D. Di, C. Zhao, Y. Liu, H. Chen, Y. Gong, X. Zhao, and H. Chen, Role of Glioma-associated GLI1 oncogene in carcinogenesis and cancertargeted therapy, Curr. Cancer Drug Targets, vol. 18, no. 6, pp. 558–566, 2018.

[10]

N. Biziukova, O. Tarasova, S. Ivanov, and V. Poroikov, Automated extraction of information from texts of scientific publications: Insights into HIV treatment strategies, Front. Genet., vol. 11, pp. 618862, 2020.

[11]

O. A. Tarasova, N. Y. Biziukova, A. V. Rudik, A. V. Dmitriev, D. A. Filimonov, and V. V. Poroikov, Extraction of data on parent compounds and their metabolites from texts of scientific abstracts, J. Chem. Inf. Model., vol. 61, no. 4, pp. 1683–1690, 2021.

[12]
J. D. Lafferty, A. McCallum, and F. C. N. Pereira, Conditional random fields: Probabilistic models for segmenting and labeling sequence data, in Proc. 18 th Int. Conf. on Machine Learning, San Francisco, CA, USA, 2001, pp. 282–289.
[13]

R. Apweiler, A. Bairoch, C. H. Wu, W. C. Barker, B. Boeckmann, S. Ferro, E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M. J. Martin, D. A. Natale, C. O'Donovan, N. Redaschi, and L. S. L. Yeh, UniProt: The universal protein knowledgebase, Nucleic Acids Res., vol. 32, pp. D115–D119, 2004.

[14]

A. Gaulton, A. Hersey, M. Nowotka, A. P. Bento, J. Chambers, D. Mendez, P. Mutowo, F. Atkinson, L. J. Bellis, E. Cibrián-Uhalte, et al., The ChEMBL database in 2017, Nucleic Acids Res., vol. 45, no. D1, pp. D945–D954, 2017.

[15]

M. Kanehisa and S. Goto, KEGG: Kyoto encyclopedia of genes and genomes, Nucleic Acids Res., vol. 28, no. 1, pp. 27–30, 2000.

[16]

L. M. Schriml, J. B. Munro, M. Schor, D. Olley, C. McCracken, V. Felix, J. A. Baron, R. Jackson, S. M. Bello, C. Bearer, et al., The Human Disease Ontology 2022 update, Nucleic Acids Res., vol. 50, no. D1, pp. D1255–D1261, 2022.

[17]

P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski, and T. Ideker, Cytoscape: A software environment for integrated models of biomolecular interaction networks, Genome Res., vol. 13, no. 11, pp. 2498–2504, 2003.

[18]

W. Min, T. H. Chang, S. Zhang, and X. Wan, TSCCA: A tensor sparse CCA method for detecting microRNA-gene patterns from multiple cancers, PLoS Comput. Biol., vol. 17, no. 6, pp. e1009044, 2021.

[19]

T. Wu, E. Hu, S. Xu, M. Chen, P. Guo, Z. Dai, T. Feng, L. Zhou, W. Tang, L. Zhan, et al., clusterProfiler 4.0: A universal enrichment tool for interpreting omics data, Innovation, vol. 2, no. 3, pp. 100141, 2021.

[20]

J. Z. Wang, Z. Du, R. Payattakool, P. S. Yu, and C. F. Chen, A new method to measure the semantic similarity of GO terms, Bioinformatics, vol. 23, no. 10, pp. 1274–1281, 2007.

[21]

H. Y. Huang, Y. C. D. Lin, S. Cui, Y. Huang, Y. Tang, J. Xu, J. Bao, Y. Li, J. Wen, H. Zuo, et al., miRTarBase update 2022: An informative resource for experimentally validated miRNA-target interactions, Nucleic Acids Res., vol. 50, no. D1, pp. D222–D230, 2022.

[22]

G. Tang, M. Cho, and X. Wang, OncoDB: An interactive online database for analysis of gene expression and viral infection in cancer, Nucleic Acids Res., vol. 50, no. D1, pp. D1334–D1339, 2022.

[23]
[24]
National Institutes of Health, Center for Cancer Genomics at the National Cancer Institute, The Cancer Genome Atlas Program (TCGA), https://www.cancer.gov/ccg/research/genome-sequencing/tcga, 2022.
[25]
National Institutes of Health, National Cancer Institute, The Surveillance, Epidemiology, and End Results (SEER) Program, https://seer.cancer.gov/, 2022.
[26]

H. Li, J. Li, W. Gao, C. Zhen, and L. Feng, Systematic analysis of ovarian cancer platinum-resistance mechanisms via text mining, J. Ovarian Res., vol. 13, no. 1, pp. 27, 2020.

[27]

B. Settles, ABNER: An open source tool for automatically tagging genes, Bioinformatics., vol. 21, no. 14, pp. 3191–3192, 2005.

[28]

W. Min, J. Liu, and S. Zhang, Edge-group sparse PCA for network-guided high dimensional data analysis, Bioinformatics, vol. 34, no. 20, pp. 3479–3487, 2018.

[29]

C. Zhen, C. Zhu, H. Chen, Y. Xiong, J. Tan, D. Chen, and J. Li, Systematic analysis of molecular mechanisms for HCC metastasis via text mining approach, Oncotarget, vol. 8, no. 8, pp. 13909–13916, 2017.

[30]

C. Bizon, S. Cox, J. Balhoff, Y. Kebede, P. Wang, K. Morton, K. Fecho, and A. Tropsha, ROBOKOP KG and KGB: Integrated knowledge graphs from federated sources, J. Chem. Inf. Model., vol. 59, no. 12, pp. 4968–4973, 2019.

[31]
The Allen Institute for Artificial Intelligence, CORD-19: COVID-19 Open Research Dataset, https://allenai.org/data/cord-19, 2020.
[32]

S. K. Hong and J. G. Lee, DTranNER: Biomedical named entity recognition with deep learning-based label-label transition model, BMC Bioinformatics, vol. 21, no. 1, pp. 53, 2020.

[33]

L. Luo, Z. Yang, P. Yang, Y. Zhang, L. Wang, J. Wang, and H. Lin, A neural network approach to chemical and gene/protein entity recognition in patents, J. Cheminform., vol. 10, no. 1, pp. 65, 2018.

[34]

S. Kaewphan, K. Hakala, N. Miekka, T. Salakoski, and F. Ginter, Wide-scope biomedical named entity recognition and normalization with CRFs, fuzzy matching and character level modeling, Database (Oxford), vol. 2018, pp. 1–10, 2018.

[35]

H. Zhou, S. Ning, Z. Liu, C. Lang, Z. Liu, and B. Lei, Knowledge-enhanced biomedical named entity recognition and normalization: Application to proteins and genes, BMC Bioinformatics, vol. 21, no. 1, pp. 35, 2020.

[36]

L. Luo, P. T. Lai, C. H. Wei, C. N. Arighi, and Z. Lu, BioRED: A rich biomedical relation extraction dataset, Brief. Bioinform., vol. 23, no. 5, pp. bbac282, 2022.

[37]

Y. Zhang, H. Lin, Z. Yang, J. Wang, S. Zhang, Y. Sun, and L. Yang, A hybrid model based on neural networks for biomedical relation extraction, J. Biomed. Inform., vol. 81, pp. 83–92, 2018.

[38]

H. Fei, Y. Zhang, Y. Ren, and D. Ji, A span-graph neural model for overlapping entity relation extraction in biomedical texts, Bioinformatics, vol. 37, no. 11, pp. 1581–1589, 2021.

[39]

S. Kuijper, H. Feitsma, R. Sheth, J. Korving, M. Reijnen, and F. Meijlink, Function and regulation of Alx4 in limb development: Complex genetic interactions with Gli3 and Shh, Dev. Biol., vol. 285, no. 2, pp. 533–544, 2005.

[40]

P. Mill, R. Mo, M. C. Hu, L. Dagnino, N. D. Rosenblum, and C. C. Hui, Shh controls epithelial proliferation via independent pathways that converge on N-Myc, Dev. Cell, vol. 9, no. 2, pp. 293–303, 2005.

[41]

T. T. Turner, H. J. Bang, S. A. Attipoe, D. S. Johnston, and J. L. Tomsig, Sonic hedgehog pathway inhibition alters epididymal function as assessed by the development of sperm motility, J. Androl., vol. 27, no. 2, pp. 225–232, 2006.

[42]

M. C. Hu, R. Mo, S. Bhella, C. W. Wilson, P. T. Chuang, C. C. Hui, and N. D. Rosenblum, GLI3-dependent transcriptional repression of Gli1, Gli2 and kidney patterning genes disrupts renal morphogenesis, Development, vol. 133, no. 3, pp. 569–578, 2006.

[43]

O. Nolan-Stevaux, J. Lau, M. L. Truitt, G. C. Chu, M. Hebrok, M. E. Fernández-Zapico, and D. Hanahan, GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation, Genes Dev., vol. 23, no. 1, pp. 24–36, 2009.

[44]

E. J. Tolosa, M. G. Fernandez-Barrena, E. Iguchi, A. L. McCleary-Wheeler, R. M. Carr, L. L. Almada, L. F. Flores, R. E. Vera, G. W. Alfonse, D. L. Marks, et al., GLI1/GLI2 functional interplay is required to control Hedgehog/GLI targets gene expression, Biochem. J., vol. 477, no. 17, pp. 3131–3145, 2020.

[45]

S. Dennler J. André, I. Alexaki, A. Li, T. Magnaldo, P. ten Dijke, X. J. Wang, F. Verrecchia, and A. Mauviel, Induction of sonic hedgehog mediators by transforming growth factor-beta: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo, Cancer Res., vol. 67, no. 14, pp. 6981–6986, 2007.

[46]

S. L. Wild, A. Elghajiji, C. Grimaldos Rodriguez, S. D. Weston, Z. D. Burke, and D. Tosh, The canonical Wnt pathway as a key regulator in liver development, Genes (Basel)., vol. 11, no. 10, pp. 1163, 2020.

[47]

A. Guasto and V. Cormier-Daire, Signaling pathways in bone development and their related skeletal dysplasia, Int. J. Mol. Sci., vol. 22, no. 9, pp. 4321, 2021.

[48]

S. Pietrobono, S. Gagliardi, and B. Stecca, Non-canonical hedgehog signaling pathway in cancer: Activation of GLI transcription factors beyond smoothened, Front. Genet., vol. 10, pp. 556, 2019.

[49]

J. H. Kong, C. Siebold, and R. Rohatgi, Biochemical mechanisms of vertebrate hedgehog signaling, Development, vol. 146, no. 10, pp. dev166892, 2019.

[50]

V. Montagnani and B. Stecca, Role of protein kinases in hedgehog pathway control and implications for cancer therapy, Cancers (Basel), vol. 11, no. 4, pp. 449, 2019.

[51]

J. Pyczek, N. Khizanishvili, M. Kuzyakova, S. Zabel, J. Bauer, F. Nitzki, S. Emmert, M. P. Schön, P. Boukamp, H. U. Schildhaus, et al., Regulation and role of GLI1 in cutaneous squamous cell carcinoma pathogenesis, Front. Genet., vol. 10, pp. 1185, 2019.

[52]

N. J. Rowbotham, A. L. Furmanski, A. L. Hager-Theodorides, S. E. Ross, E. Drakopoulou, C. Koufaris, S. V. Outram, and T. Crompton, Repression of hedgehog signal transduction in T-lineage cells increases TCR-induced activation and proliferation, Cell Cycle, vol. 7, no. 7, pp. 904–908, 2008.

[53]

G. A. Stewart, J. A. Lowrey, S. J. Wakelin, P. M. Fitch, S. Lindey, M. J. Dallman, J. R. Lamb, and S. E. M. Howie, Sonic hedgehog signaling modulates activation of and cytokine production by human peripheral CD4+ T cells, J. Immunol., vol. 169, no. 10, pp. 5451–5457, 2002.

[54]

J. Y. Chai, V. Sugumar, M. A. Alshawsh, W. F. Wong, A. Arya, P. P. Chong, and C. Y. Looi, The role of smoothened-dependent and -independent hedgehog signaling pathway in tumorigenesis, Biomedicines, vol. 9, no. 9, pp. 1188, 2021.

[55]

M. de la Roche, A. T. Ritter, K. L. Angus, C. Dinsmore, C. H. Earnshaw, J. F. Reiter, and G. M. Griffiths, Hedgehog signaling controls T cell killing at the immunological synapse, Science, vol. 342, no. 6163, pp. 1247–1250, 2013.

[56]

A. L. Furmanski, A. Barbarulo, A. Solanki, C. I. Lau, H. Sahni, J. I. Saldana, F. D'Acquisto, and T. Crompton, The transcriptional activator Gli2 modulates T-cell receptor signalling through attenuation of AP-1 and NF κB activity, J. Cell. Sci., vol. 128, no. 11, pp. 2085–2095, 2015.

[57]

V. S. F. Chan, S. Y. Chau, L. Tian, Y. Chen, S. K. Y. Kwong, J. Quackenbush, M. Dallman, J. Lamb, and P. K. H. Tam, Sonic hedgehog promotes CD4+ T lymphocyte proliferation and modulates the expression of a subset of CD28-targeted genes, Int. Immunol., vol. 18, no. 12, pp. 1627–1636, 2006.

[58]

K. Yaddanapudi, J. De Miranda, M. Hornig, and W. I. Lipkin, Toll-like receptor 3 regulates neural stem cell proliferation by modulating the Sonic Hedgehog pathway, PLoS One, vol. 6, no. 10, pp. e26766, 2011.

[59]

Y. Zhong, Y. Zhang, W. Liu, Y. Zhao, L. Zou, and X. Liu, TLR4 modulates senescence and paracrine action in placental mesenchymal stem cells via inhibiting hedgehog signaling pathway in preeclampsia, Oxid. Med. Cell. Longev., vol. 2022, pp. 7202837, 2022.

[60]

S. J. Matissek, M. Karbalivand, W. Han, A. Boutilier, E. Yzar-Garcia, L. L. Kehoe, D. S. Gardner, A. Hage, K. Fleck, V. Jeffers, et al., A novel mechanism of regulation of the oncogenic transcription factor GLI3 by toll-like receptor signaling, Oncotarget, vol. 13, pp. 944–959, 2022.

[61]

A. N. Sigafoos, B. D. Paradise, and M. E. Fernandez-Zapico, Hedgehog/GLI signaling pathway: Transduction, regulation, and implications for disease, Cancers (Basel), vol. 13, no. 14, pp. 3410, 2021.

[62]

S. Fattahi, M. P. Langroudi, and H. Akhavan-Niaki, Hedgehog signaling pathway: Epigenetic regulation and role in disease and cancer development, J. Cell. Physiol., vol. 233, no. 8, pp. 5726–5735, 2018.

[63]

M. Niyaz, M. S. Khan, and S. Mudassar, Hedgehog signaling: An Achilles' Heel in cancer, Transl. Oncol., vol. 12, no. 10, pp. 1334–1344, 2019.

[64]

S. Iriana, K. Asha, M. Repak, and N. Sharma-Walia, Hedgehog signaling: Implications in cancers and viral infections, Int. J. Mol. Sci., vol. 22, no. 3, pp. 1042, 2021.

[65]

Y. Zhou, J. Huang, B. Jin, S. He, Y. Dang, T. Zhao, and Z. Jin, The emerging role of hedgehog signaling in viral infections, Front. Microbiol., vol. 13, pp. 870316, 2022.

[66]

T. Yoshida, A. Hamano, A. Ueda, H. Takeuchi, and S. Yamaoka, Human SMOOTHENED inhibits human immunodeficiency virus type 1 infection, Biochem. Biophys. Res. Commun., vol. 493, no. 1, pp. 132–138, 2017.

[67]

H. Y. Kim, H. K. Cho, S. P. Hong, and J. Cheong, Hepatitis B virus X protein stimulates the Hedgehog-Gli activation through protein stabilization and nuclear localization of Gli1 in liver cancer cells, Cancer Lett., vol. 309, no. 2, pp. 176–184, 2011.

[68]

Z. HajiEsmailPoor, P. Tabnak, B. Ahmadzadeh, S. S. Ebrahimi, B. Faal, and N. Mashatan, Role of hedgehog signaling related non-coding RNAs in developmental and pathological conditions, Biomed. Pharmacother., vol. 153, pp. 113507, 2022.

[69]

T. Liu, Z. Wang, M. Dong, J. Wei, and Y. Pan, MicroRNA-26a inhibits cell proliferation and invasion by targeting FAM98A in breast cancer, Oncol. Lett., vol. 21, no. 5, pp. 367, 2021.

[70]

E. Ferretti, E. De Smaele, E. Miele, P. Laneve, A. Po, M. Pelloni, A. Paganelli, L. Di Marcotullio, E. Caffarelli, I. Screpanti, et al., Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells, EMBO J., vol. 27, no. 19, pp. 2616–2627, 2008.

[71]

Z. Hu, L. Li, J. Ran, G. Chu, H. Gao, L. Guo, and J. Chen, miR-125b acts as anti-fibrotic therapeutic target through regulating Gli3 in vivo and in vitro, Ann. Hepatol., vol. 18, no. 6, pp. 825–832, 2019.

[72]

Z. Liang, J. Li, L. Zhao, and Y. Deng, miR-375 affects the hedgehog signaling pathway by downregulating RAC1 to inhibit hepatic stellate cell viability and epithelial-mesenchymal transition, Mol. Med. Rep., vol. 23, no. 3, pp. 182, 2021.

[73]

Y. Hou, Q. Hu, J. Huang, and H. Xiong, Omeprazole inhibits cell proliferation and induces G0/G1 cell cycle arrest through up-regulating miR-203a-3p expression in Barrett’s esophagus cells, Front. Pharmacol., vol. 8, pp. 968, 2018.

[74]

B. N. Singh, M. J. Doyle, C. V. Weaver, N. Koyano-Nakagawa, and D. J. Garry, Hedgehog and Wnt coordinate signaling in myogenic progenitors and regulate limb regeneration, Dev. Biol., vol. 371, no. 1, pp. 23–34, 2012.

[75]

G. R. van den Brink, S. A. Bleuming, J. C. H. Hardwick, B. L. Schepman, G. J. Offerhaus, J. J. Keller, C. Nielsen, W. Gaffield, S. J. H. van Deventer, D. J. Roberts, et al., Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation, Nat. Genet., vol. 36, no. 3, pp. 277–282, 2004.

[76]

R. de Cássia Viu Carrara, A. M. Fontes, K. J. Abraham, M. D. Orellana, S. K. Haddad, P. V. B. Palma, R. A. Panepucci, M. A. Zago, and D. T. Covas, Expression differences of genes in the PI3K/AKT, WNT/b-catenin, SHH, NOTCH and MAPK signaling pathways in CD34+ hematopoietic cells obtained from chronic phase patients with chronic myeloid leukemia and from healthy controls, Clin. Transl. Oncol., vol. 20, no. 4, pp. 542–549, 2018.

[77]

M. Hellwig, M. C. Lauffer, M. Bockmayr, M. Spohn, D. J. Merk, L. Harrison, J. Ahlfeld, A. Kitowski, J. E. Neumann, J. Ohli, et al., TCF4 (E2-2) harbors tumor suppressive functions in SHH medulloblastoma, Acta Neuropathol., vol. 137, no. 4, pp. 657–673, 2019.

[78]

D. Hu, N. M. Young, X. Li, Y. Xu, B. Hallgrímsson, and R. S. Marcucio, A dynamic Shh expression pattern, regulated by SHH and BMP signaling, coordinates fusion of primordia in the amniote face, Development, vol. 142, no. 3, pp. 567–574, 2015.

[79]

W. J. Bae, Q. S. Auh, H. C. Lim, G. T. Kim, H. S. Kim, and E. C. Kim, Sonic hedgehog promotes cementoblastic differentiation via activating the BMP pathways, Calcif. Tissue Int., vol. 99, no. 4, pp. 396–407, 2016.

[80]

S. Li, S. J. M. Hoefnagel, M. Read, S. Meijer, M. I. van Berge Henegouwen, S. S. Gisbertz, E. Bonora, D. S. H. Liu, W. A. Phillips, S. Calpe, et al., Selective targeting BMP2 and 4 in SMAD4 negative esophageal adenocarcinoma inhibits tumor growth and aggressiveness in preclinical models, Cell. Oncol. (Dordr.), vol. 45, no. 4, pp. 639–658, 2022.

[81]

B. S. Kalal, P. K. Modi, D. Upadhya, P. Saha, T. S. K. Prasad, and V. R. Pai, Inhibition of bone morphogenetic proteins signaling suppresses metastasis melanoma: A proteomics approach, Am. J. Transl. Res., vol. 13, no. 10, pp. 11081–11093, 2021.

[82]

K. Shin, A. Lim, C. Zhao, D. Sahoo, Y. Pan, E. Spiekerkoetter, J. C. Liao, and P. A. Beachy, Hedgehog signaling restrains bladder cancer progression by eliciting stromal production of urothelial differentiation factors, Cancer Cell, vol. 26, no. 4, pp. 521–533, 2014.

[83]

J. Y. Zhu, X. Yang, Y. Chen, Y. Jiang, S. J. Wang, Y. Li, X. Q. Wang, Y. Meng, M. M. Zhu, X. Ma, et al., Curcumin suppresses lung cancer stem cells via inhibiting Wnt/ β-catenin and sonic hedgehog pathways, Phytother. Res., vol. 31, no. 4, pp. 680–688, 2017.

[84]

G. Liang, M. Liu, Q. Wang, Y. Shen, H. Mei, D. Li, and W. Liu, Itraconazole exerts its anti-melanoma effect by suppressing Hedgehog, Wnt, and PI3K/mTOR signaling pathways, Oncotarget, vol. 8, no. 17, pp. 28510–28525, 2017.

[85]

J. Rodriguez-Blanco, L. Pednekar, C. Penas, B. Li, V. Martin, J. Long, E. Lee, W. A. Weiss, C. Rodriguez, N. Mehrdad, et al., Inhibition of WNT signaling attenuates self-renewal of SHH-subgroup medulloblastoma, Oncogene, vol. 36, no. 45, pp. 6306–6314, 2017.

[86]

Y. Tajima, T. Murakami, T. Saito, T. Hiromoto, Y. Akazawa, N. Sasahara, H. Mitomi, T. Yao, and S. Watanabe, Distinct involvement of the sonic hedgehog signaling pathway in gastric adenocarcinoma of fundic gland type and conventional gastric adenocarcinoma, Digestion, vol. 96, no. 2, pp. 81–91, 2017.

[87]

T. Ueda, H. Tsubamoto, K. Inoue, K. Sakata, H. Shibahara, and T. Sonoda, Itraconazole modulates hedgehog, WNT/ β-catenin, as well as akt signalling, and inhibits proliferation of cervical cancer cells, Anticancer Res., vol. 37, no. 7, pp. 3521–3526, 2017.

[88]

J. M. Bonifas, S. Pennypacker, P. T. Chuang, A. P. McMahon, M. Williams, A. Rosenthal, F. J. De Sauvage, and E. H. Epstein Jr, Activation of expression of hedgehog target genes in basal cell carcinomas, J. Invest. Dermatol., vol. 116, no. 5, pp. 739–742, 2001.

[89]

Y. Xu, P. Wang, M. Li, Z. Wu, X. Li, J. Shen, and R. Xu, Natural small molecule triptonide inhibits lethal acute myeloid leukemia with FLT3-ITD mutation by targeting Hedgehog/FLT3 signaling, Biomed. Pharmacother., vol. 133, pp. 111054, 2021.

[90]

S. Huq, N. V. Kannapadi, J. Casaos, T. Lott, R. Felder, R. Serra, N. L. Gorelick, M. A. Ruiz-Cardozo, A. S. Ding, A. Cecia, et al., Preclinical efficacy of ribavirin in SHH and group 3 medulloblastoma, J. Neurosurg. Pediatr., vol. 27, no. 4, pp. 482–488, 2021.

[91]

V. Kumar, Q. Wang, B. Sethi, F. Lin, V. Kumar, D. W. Coulter, Y. Dong, and R. I. Mahato, Polymeric nanomedicine for overcoming resistance mechanisms in hedgehog and Myc-amplified medulloblastoma, Biomaterials, vol. 278, pp. 121138, 2021.

[92]

G. Polychronidou, V. Kotoula, K. Manousou, I. Kostopoulos, G. Karayannopoulou, E. Vrettou, M. Bobos, G. Raptou, I. Efstratiou, D. Dionysopoulos, et al., Mismatch repair deficiency and aberrations in the Notch and Hedgehog pathways are of prognostic value in patients with endometrial cancer, PLoS One, vol. 13, no. 12, pp. e0208221, 2018.

[93]

A. D. Steg, A. A. Katre, B. Goodman, H. D. Han, A. M. Nick, R. L. Stone, R. L. Coleman, R. D. Alvarez, G. Lopez-Berestein, A. K. Sood, et al., Targeting the notch ligand JAGGED1 in both tumor cells and stroma in ovarian cancer, Clin. Cancer Res., vol. 17, no. 17, pp. 5674–5685, 2011.

[94]

D. Danielpour, S. Corum, P. Leahy, and A. Bangalore, Jagged-1 is induced by mTOR inhibitors in renal cancer cells through an Akt/ALK5/Smad4-dependent mechanism, Curr Res. Pharmacol. Drug Discov., vol. 3, pp. 100117, 2022.

[95]
J. P. Liu, Y. T. Shi, M. M. Wu, M. Q. Xu, F. M. Zhang, Z. Q. He, and M. Tang, JAG1 promotes migration, invasion, and adhesion of triple-negative breast cancer cells by promoting angiogenesis, (in Chinese), J. Southern Med. Univ., vol. 42, no. 7, pp. 1100–1109, 2022.
[96]

L. Rios-Colon, J. Chijioke, S. Niture, Z. Afzal, Q. Qi, A. Srivastava, M. Ramalinga, H. Kedir, P. Cagle, E. Arthur, et al., Leptin modulated microRNA-628-5p targets Jagged-1 and inhibits prostate cancer hallmarks, Sci. Rep., vol. 12, no. 1, pp. 10073, 2022.

[97]

T. H. W. Dobson, R. H. Tao, J. Swaminathan, S. Maegawa, S. Shaik, J. Bravo-Alegria, A. Sharma, B. Kennis, Y. Yang, K. Callegari, et al., Transcriptional repressor REST drives lineage stage-specific chromatin compaction at Ptch1 and increases AKT activation in a mouse model of medulloblastoma, Sci. Signal., vol. 12, no. 565, pp. eaan8680, 2019.

[98]

H. Yu, M. Wang, T. Zhang, L. Cao, Z. Li, Y. Du, Y. Hai, X. Gao, J. Ji, and J. Wu, Dual roles of β-arrestin 1 in mediating cell metabolism and proliferation in gastric cancer, Proc. Natl. Acad. Sci. U. S. A., vol. 119, no. 40, pp. e2123231119, 2022.

[99]

Y. Ye, H. Jiang, Y. Wu, G. Wang, Y. Huang, W. Sun, and M. Zhang, Role of ARRB1 in prognosis and immunotherapy: A Pan-Cancer analysis, Front. Mol. Biosci., vol. 9, pp. 1001225, 2022.

[100]

Y. Jiang, P. Zhu, Y. Gao, and A. Wang, miR-379-5p inhibits cell proliferation and promotes cell apoptosis in non-small cell lung cancer by targeting β-arrestin-1, Mol. Med. Rep., vol. 22, no. 6, pp. 4499–4508, 2020.

[101]

H. T. Purayil, Y. Zhang, J. B. Black, R. Gharaibeh, and Y. Daaka, Nuclear β Arrestin1 regulates androgen receptor function in castration resistant prostate cancer, Oncogene, vol. 40, no. 14, pp. 2610–2620, 2021.

[102]

X. Zhang, Z. Kong, X. Xu, X. Yun, J. Chao, D. Ding, T. Li, Y. Gao, N. Guan, C. Zhu, et al., ARRB1 drives gallbladder cancer progression by facilitating TAK1/MAPK signaling activation, J. Cancer, vol. 12, no. 7, pp. 1926–1935, 2021.

[103]

Q. Fan, M. He, T. Sheng, X. Zhang, M. Sinha, B. Luxon, X. Zhao, and J. Xie, Requirement of TGF β signaling for SMO-mediated carcinogenesis, J. Biol. Chem., vol. 285, no. 47, pp. 36570–36576, 2010.

[104]

S. Babashah, M. Sadeghizadeh, A. Hajifathali, M. R. Tavirani, M. S. Zomorod, M. Ghadiani, and M. Soleimani, Targeting of the signal transducer Smo links microRNA-326 to the oncogenic Hedgehog pathway in CD34+ CML stem/progenitor cells, Int. J. Cancer, vol. 133, no. 3, pp. 579–589, 2013.

[105]

S. Yin, W. Du, F. Wang, B. Han, Y. Cui, D. Yang, H. Chen, D. Liu, X. Liu, X. Zhai, et al., MicroRNA-326 sensitizes human glioblastoma cells to curcumin via the SHH/GLI1 signaling pathway, Cancer Biol. Ther., vol. 19, no. 4, pp. 260–270, 2018.

[106]

M. Park, M. Kim, D. Hwang, M. Park, W. K. Kim, S. K. Kim, J. Shin, E. S. Park, C. M. Kang, Y. K. Paik, et al., Characterization of gene expression and activated signaling pathways in solid-pseudopapillary neoplasm of pancreas, Mod. Pathol., vol. 27, no. 4, pp. 580–593, 2014.

Big Data Mining and Analytics
Pages 107-130
Cite this article:
Biziukova NY, Ivanov SM, Tarasova OA. Identification of Proteins and Genes Associated with Hedgehog Signaling Pathway Involved in Neoplasm Formation Using Text-Mining Approach. Big Data Mining and Analytics, 2024, 7(1): 107-130. https://doi.org/10.26599/BDMA.2023.9020007

734

Views

91

Downloads

1

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 20 December 2022
Revised: 11 April 2023
Accepted: 25 April 2023
Published: 25 December 2023
© The author(s) 2023.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return