Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Graph databases have gained widespread adoption in various industries and have been utilized in a range of applications, including financial risk assessment, commodity recommendation, and data lineage tracking. While the principles and design of these databases have been the subject of some investigation, there remains a lack of comprehensive examination of aspects such as storage layout, query language, and deployment. The present study focuses on the design and implementation of graph storage layout, with a particular emphasis on tree-structured key-value stores. We also examine different design choices in the graph storage layer and present our findings through the development of TuGraph, a highly efficient single-machine graph database that significantly outperforms well-known Graph DataBase Management System (GDBMS). Additionally, TuGraph demonstrates superior performance in the Linked Data Benchmark Council (LDBC) Social Network Benchmark (SNB) interactive benchmark.
L. Lu, T. S. Pillai, H. Gopalakrishnan, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, WiscKey: Separating keys from values in SSD-conscious storage, ACM Trans. Storage, vol. 13, no. 1, pp. 5, 2017.
1401
Views
230
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).