Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Understanding the subcellular localization of long non-coding RNAs (lncRNAs) is crucial for unraveling their functional mechanisms. While previous computational methods have made progress in predicting lncRNA subcellular localization, most of them ignore the sequence order information by relying on k-mer frequency features to encode lncRNA sequences. In the study, we develope SGCL-LncLoc, a novel interpretable deep learning model based on supervised graph contrastive learning. SGCL-LncLoc transforms lncRNA sequences into de Bruijn graphs and uses the Word2Vec technique to learn the node representation of the graph. Then, SGCL-LncLoc applies graph convolutional networks to learn the comprehensive graph representation. Additionally, we propose a computational method to map the attention weights of the graph nodes to the weights of nucleotides in the lncRNA sequence, allowing SGCL-LncLoc to serve as an interpretable deep learning model. Furthermore, SGCL-LncLoc employs a supervised contrastive learning strategy, which leverages the relationships between different samples and label information, guiding the model to enhance representation learning for lncRNAs. Extensive experimental results demonstrate that SGCL-LncLoc outperforms both deep learning baseline models and existing predictors, showing its capability for accurate lncRNA subcellular localization prediction. Furthermore, we conduct a motif analysis, revealing that SGCL-LncLoc successfully captures known motifs associated with lncRNA subcellular localization. The SGCL-LncLoc web server is available at http://csuligroup.com:8000/SGCL-LncLoc. The source code can be obtained from https://github.com/CSUBioGroup/SGCL-LncLoc.
C.-C. Hon, J. A. Ramilowski, J. Harshbarger, N. Bertin, O. J. L. Rackham, J. Gough, E. Denisenko, S. Schmeier, T. M. Poulsen, J. Severin et al., An atlas of human long non-coding RNAs with accurate 5’ ends, Nature, vol. 543, no. 7644, pp. 199–204, 2017.
J. J. Quinn and H. Y. Chang, Unique features of long non-coding RNA biogenesis and function, Nat. Rev. Genet., vol. 17, no. 1, pp. 47–62, 2016.
U. A. Ørom, T. Derrien, M. Beringer, K. Gumireddy, A. Gardini, G. Bussotti, F. Lai, M. Zytnicki, C. Notredame, Q. Huang, et al., Long noncoding RNAs with enhancer-like function in human cells, Cell, vol. 143, no. 1, pp. 46–58, 2010.
R. A. Gupta, N. Shah, K. C. Wang, J. Kim, H. M. Horlings, D. J. Wong, M. C. Tsai, T. Hung, P. Argani, J. L. Rinn, et al., Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis, Nature, vol. 464, no. 7291, pp. 1071–1076, 2010.
E. Hacisuleyman, L. A. Goff, C. Trapnell, A. Williams, J. Henao-Mejia, L. Sun, P. McClanahan, D. G. Hendrickson, M. Sauvageau, D. R. Kelley, et al., Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre, Nat. Struct. Mol. Biol., vol. 21, no. 2, pp. 198–206, 2014.
C. Carrieri, L. Cimatti, M. Biagioli, A. Beugnet, S. Zucchelli, S. Fedele, E. Pesce, I. Ferrer, L. Collavin, C. Santoro, et al., Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat, Nature, vol. 491, no. 7424, pp. 454–457, 2012.
F. Karreth, M. Reschke, A. Ruocco, C. Ng, B. Chapuy, V. Léopold, M. Sjoberg, T. Keane, A. Verma, U. Ala, et al., The BRAF pseudogene functions as a competitive endogenous RNA and induces lymphoma InVivo, Cell, vol. 161, no. 2, pp. 319–332, 2015.
D. M. Anderson, K. M. Anderson, C.-L. Chang, C. A. Makarewich, B. R. Nelson, J. R. McAnally, P. Kasaragod, J. M. Shelton, J. Liou, R. Bassel-Duby, et al., A micropeptide encoded by a putative long noncoding RNA regulates muscle performance, Cell, vol. 160, no. 4, pp. 595–606, 2015.
Z. D. Su, Y. Huang, Z. Y. Zhang, Y. W. Zhao, D. Wang, W. Chen, K. C. Chou, and H. Lin, iLoc-lncRNA: Predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC, Bioinformatics, vol. 34, no. 24, pp. 4196–4204, 2018.
A. Ahmad, H. Lin, and S. Shatabda, Locate-R: Subcellular localization of long non-coding RNAs using nucleotide compositions, Genomics, vol. 112, no. 3, pp. 2583–2589, 2020.
Z. Y. Zhang, Z. J. Sun, Y. H. Yang, and H. Lin, Towards a better prediction of subcellular location of long non-coding RNA, Front. Comput. Sci., vol. 16, no. 5, p. 165903, 2022.
Z. Cao, X. Pan, Y. Yang, Y. Huang, and H. B. Shen, The lncLocator: A subcellular localization predictor for long non-coding RNAs based on a stacked ensemble classifier, Bioinformatics, vol. 34, no. 13, pp. 2185–2194, 2018.
B. L. Gudenas and L. Wang, Prediction of LncRNA subcellular localization with deep learning from sequence features, Sci. Rep., vol. 8, no. 1, p. 16385, 2018.
S. Feng, Y. Liang, W. Du, W. Lv, and Y. Li, LncLocation: Efficient subcellular location prediction of long non-coding RNA-based multi-source heterogeneous feature fusion, Int. J. Mol. Sci., vol. 21, no. 19, p. 7271, 2020.
J. Lyu, P. Zheng, Y. Qi, and G. Huang, LightGBM-LncLoc: A LightGBM-based computational predictor for recognizing long non-coding RNA subcellular localization, Mathematics, vol. 11, no. 3, p. 602, 2023.
M. Zeng, Y. Wu, C. Lu, F. Zhang, F. X. Wu, and M. Li, DeepLncLoc: A deep learning framework for long non-coding RNA subcellular localization prediction based on subsequence embedding, Brief. Bioinform., vol. 23, no. 1, p. bbab360, 2022.
M. Zeng, Y. Wu, Y. Li, R. Yin, C. Lu, J. Duan, and M. Li, LncLocFormer: A Transformer-based deep learning model for multi-label lncRNA subcellular localization prediction by using localization-specific attention mechanism, Bioinformatics, vol. 39, no. 12, p. btad752, 2023.
M. Li, B. Zhao, R. Yin, C. Lu, F. Guo, and M. Zeng, GraphLncLoc: Long non-coding RNA subcellular localization prediction using graph convolutional networks based on sequence to graph transformation, Brief. Bioinform., vol. 24, no. 1, p. bbac565, 2023.
D. Mas-Ponte, J. Carlevaro-Fita, E. Palumbo, T. Hermoso Pulido, R. Guigo, and R. Johnson, LncATLAS database for subcellular localization of long noncoding RNAs, RNA, vol. 23, no. 7, pp. 1080–1087, 2017.
L. P. B. Bouvrette, N. A. L. Cody, J. Bergalet, F. A. Lefebvre, C. Diot, X. Wang, M. Blanchette, and E. Lécuyer, CeFra-seq reveals broad asymmetric mRNA and noncoding RNA distribution profiles in Drosophila and human cells, RNA, vol. 24, no. 1, pp. 98–113, 2018.
F. M. Fazal, S. Han, K. R. Parker, P. Kaewsapsak, J. Xu, A. N. Boettiger, H. Y. Chang, and A. Y. Ting, Atlas of subcellular RNA localization revealed by APEX-seq, Cell, vol. 178, no. 2, pp. 473–490.e26, 2019.
Y. Wu, M. Gao, M. Zeng, J. Zhang, and M. Li, BridgeDPI: A novel Graph Neural Network for predicting drug-protein interactions, Bioinformatics, vol. 38, no. 9, pp. 2571–2578, 2022.
S. Kan, Y. Cen, Y. Li, M. Vladimir, and Z. He, Local semantic correlation modeling over graph neural networks for deep feature embedding and image retrieval, IEEE Trans. Image Process., vol. 31, pp. 2988–3003, 2022.
M. Chen, Y. Jiang, X. Lei, Y. Pan, C. Ji, W. Jiang, and H. Xiong, Drug-target interactions prediction based on signed heterogeneous graph neural networks, Chin. J. Electron., vol. 33, no. 1, pp. 231–244, 2024.
S. Kan, Z. He, Y. Cen, Y. Li, V. Mladenovic, and Z. He, Contrastive Bayesian analysis for deep metric learning, IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 6, pp. 7220–7238, 2023.
P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, and D. Krishnan, Supervised contrastive learning, Advances in Neural Information Processing Systems, vol. 33, pp. 18661–18673, 2020.
S. Chen and C. Geng, A comprehensive perspective of contrastive self-supervised learning, Front. Comput. Sci., vol. 15, no. 4, p. 154332, 2021.
Y. Guo, X. Lei, Y. Pan, and R. Su, An encoding-decoding framework based on CNN for circRNA-RBP binding sites prediction, Chin. J. Electron., vol. 33, no. 1, pp. 256–263, 2024.
Y. Lubelsky and I. Ulitsky, Sequences enriched in Alu repeats drive nuclear localization of long RNAs in human cells, Nature, vol. 555, no. 7694, pp. 107–111, 2018.
B. Zhang, L. Gunawardane, F. Niazi, F. Jahanbani, X. Chen, and S. Valadkhan, A novel RNA motif mediates the strict nuclear localization of a long noncoding RNA, Mol. Cell. Biol., vol. 34, no. 12, pp. 2318–2329, 2014.
X. Yang, X. Lei, and J. Zhao, Essential protein prediction based on shuffled frog-leaping algorithm, Chin. J Electronics, vol. 30, no. 4, pp. 704–711, 2021.
Y. Zhang, X. Lei, Z. Fang, and Y. Pan, CircRNA-disease associations prediction based on metapath2vec++ and matrix factorization, Big Data Mining and Analytics, no. 4, pp. 280–291, 2020.
Y. Li, M. Zeng, F. Zhang, F. X. Wu, and M. Li, DeepCellEss: Cell line-specific essential protein prediction with attention-based interpretable deep learning, Bioinformatics, vol. 39, no. 1, p. btac779, 2023.
1198
Views
385
Downloads
1
Crossref
1
Web of Science
1
Scopus
0
CSCD
Altmetrics
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).