AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Empirical and Experimental Perspectives on Big Data in Recommendation Systems: A Comprehensive Survey

Department of Computer Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates (UAE)
School of Computing and Mathematical Sciences, Birkbeck College, University of London, London WC1E 7HU, UK
Department of Science, Brighton College, Dubai 122002, United Arab Emirates
Show Author Information

Abstract

This survey paper provides a comprehensive analysis of big data algorithms in recommendation systems, addressing the lack of depth and precision in existing literature. It proposes a two-pronged approach: a thorough analysis of current algorithms and a novel, hierarchical taxonomy for precise categorization. The taxonomy is based on a tri-level hierarchy, starting with the methodology category and narrowing down to specific techniques. Such a framework allows for a structured and comprehensive classification of algorithms, assisting researchers in understanding the interrelationships among diverse algorithms and techniques. Covering a wide range of algorithms, this taxonomy first categorizes algorithms into four main analysis types: user and item similarity based methods, hybrid and combined approaches, deep learning and algorithmic methods, and mathematical modeling methods, with further subdivisions into sub-categories and techniques. The paper incorporates both empirical and experimental evaluations to differentiate between the techniques. The empirical evaluation ranks the techniques based on four criteria. The experimental assessments rank the algorithms that belong to the same category, sub-category, technique, and sub-technique. Also, the paper illuminates the future prospects of big data techniques in recommendation systems, underscoring potential advancements and opportunities for further research in this fields.

References

[1]

J. Nie, Z. Zhao, L. Huang, W. Nie, and Z. Wei, Cross-domain recommendation via user-clustering and multidimensional information fusion, IEEE Trans. Multimedia, vol. 25, pp. 868–880, 2023.

[2]

G. Zhao, X. Lei, X. Qian, and T. Mei, Exploring users’ internal influence from reviews for social recommendation, IEEE Trans. Multimedia, vol. 21, no. 3, pp. 771–781, 2019.

[3]

J. Xin, Z. Wang, L. Qu, and G. Wang, Elastic extreme learning machine for big data classification, Neurocomputing, vol. 149, pp. 464–471, 2015.

[4]

C. Yang, E. Kristiani, and Y. L. Chang, Big data and machine learning driven bioprocessing – Recent trends and critical analysis, Bioresour. Technol., vol. 372, p. 128625, 2023.

[5]

J. Yu, H. Yin, J. Li, M. Gao, Z. Huang, and L. Cui, Enhancing social recommendation with adversarial graph convolutional networks, IEEE Trans. Knowledge Data Eng., vol. 34, no. 8, pp. 3727–3739, 2022.

[6]

B. A. Hammou, A. A. Lahcen, and S. Mouline, A distributed group recommendation system based on extreme gradient boosting and big data technologies, Appl. Intell., vol. 49, no. 12, pp. 4128–4149, 2019.

[7]
R. A. Zayed, L. F. Ibrahim, H. A. Hefny, and H. A. Salman, Shilling attacks detection in collaborative recommender system: Challenges and promise, in Proc. Workshops of the 34 th Int. Conf. Advanced Information Networking and Applications, Caserta, Italy, 2020, pp. 429–439.
[8]

R. Ranjan, O. Rana, S. Nepal, M. Yousif, P. James, Z. Wen, S. Barr, P. Watson, P. P. Jayaraman, D. Georgakopoulos, et al., The next grand challenges: Integrating the Internet of Things and data science, IEEE Cloud Comput., vol. 5, no. 3, pp. 12–26, 2018.

[9]
K. Taha and R. Elmasri, XCDSearch: An XML context-driven search engine, IEEE Trans. Knowledge Data Eng., vol. 22, no. 12, pp. 1781–1796, 2010.
[10]

W. Dai, Q. Zhang, W. Pan, and Z. Ming, Transfer to rank for top-N recommendation, IEEE Trans. Big Data, vol. 6, no. 4, pp. 770–779, 2020.

[11]

K. Taha, D. Homouz, H. Al Muhairi, and Z. Al Mahmoud, GRank: A middleware search engine for ranking genes by relevance to given genes, BMC Bioinformatics, vol. 14, p. 251, 2013.

[12]
G. Yue, R. Xiao, Z. Zhao, and C. Li, AF-GCN: Attribute-fusing graph convolution network for recommendation, IEEE Trans. Big Data, vol. 9, no. 2, pp. 597–607, 2023.
[13]

W. Huang, J. Liu, T. Li, T. Huang, S. Ji, and J. Wan, FedDSR: Daily schedule recommendation in a federated deep reinforcement learning framework, IEEE Trans. Knowledge Data Eng., vol. 35, no. 4, pp. 3912–3924, 2023.

[14]

J. M. Shapiro, Smart cities: Quality of life, productivity, and the growth effects of human capital, Rev. Econ. Statist., vol. 88, no. 2, pp. 324–335, 2006.

[15]
Y. Cheng, H. Chen, L. Xu, K. Chen, X. Wang, and Z. Huang, Exploring the role of big data algorithm recommendation in smart cities-taking book recommendation as an example, in Proc. 2023 Int. Conf. IT Innovation and Knowledge Discovery (ITIKD ), Manama, Bahrain, 2023, pp. 1–5.
[16]

D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, Using collaborative filtering to weave an information tapestry, Commun. ACM, vol. 35, no. 12, pp. 61–70, 1992.

[17]

G. Adomavicius and A. Tuzhilin, Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions, IEEE Trans. Knowledge Data Eng., vol. 17, no. 6, pp. 734–749, 2005.

[18]

Y. Koren, R. Bell, and C. Volinsky, Matrix factorization techniques for recommender systems, Computer, vol. 42, no. 8, pp. 30–37, 2009.

[19]
A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver, Multiverse recommendation: N-dimensional tensor factorization for context-aware collaborative filtering, in Proc. 4 th ACM Conf. Recommender Systems, Barcelona, Spain, 2010, pp. 79–86.
[20]
I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning. Cambridge, MA, USA: MIT Press, 2016.
[21]

D. Liu, J. Li, B. Du, J. Chang, R. Gao, and Y. Wu, A hybrid neural network approach to combine textual information and rating information for item recommendation, Knowledge Inf. Syst., vol. 63, no. 3, pp. 621–646, 2021.

[22]

J. Wang, N. Wu, and W. X. Zhao, Personalized route recommendation with neural network enhanced search algorithm, IEEE Trans. Knowledge Data Eng., vol. 34, no. 12, pp. 5910–5924, 2022.

[23]
X. Sun, H. Cheng, J. Li, B. Liu, and J. Guan, All in one: Multi-task prompting for graph neural networks, in Proc. 29 th ACM SIGKDD Conf. Knowledge Discovery and Data Mining, Long Beach, CA, USA, 2023, pp. 2120–2131.
[24]

N. Liu and J. Zhao, Recommendation system based on deep sentiment analysis and matrix factorization, IEEE Access, vol. 11, pp. 16994–17001, 2023.

[25]

J. Sun, L. Gao, X. Shen, S. Liu, R. Liang, S. Du, and S. Liu, Separated graph neural networks for recommendation systems, IEEE Trans. Ind. Inf., vol. 19, no. 1, pp. 382–393, 2023.

[26]

X. Sun, H. Cheng, B. Liu, J. Li, H. Chen, G. Xu, and H. Yin, Self-supervised hypergraph representation learning for sociological analysis, IEEE Trans. Knowledge Data Eng., vol. 35, no. 11, pp. 11860–11871, 2023.

[27]

S. Hu, A. Kumar, F. Al-Turjman, S. Gupta, S. Seth, and Shubham, Reviewer credibility and sentiment analysis based user profile modelling for online product recommendation, IEEE Access, vol. 8, pp. 26172–26189, 2020.

[28]

W. Wang, T. Tang, F. Xia, Z. Gong, Z. Chen, and H. Liu, Collaborative filtering with network representation learning for citation recommendation, IEEE Trans. Big Data, vol. 8, no. 5, pp. 1233–1246, 2022.

[29]

S. Jiang, X. Qian, T. Mei, and Y. Fu, Personalized travel sequence recommendation on multi-source big social media, IEEE Trans. Big Data, vol. 2, no. 1, pp. 43–56, 2016.

[30]

D. Lian, Y. Ge, F. Zhang, N. J. Yuan, X. Xie, T. Zhou, and Y. Rui, Scalable content-aware collaborative filtering for location recommendation, IEEE Trans. Knowledge Data Eng., vol. 30, no. 6, pp. 1122–1135, 2018.

[31]

Y. Liu, C. Yang, J. Ma, W. Xu, and Z. Hua, A social recommendation system for academic collaboration in undergraduate research, Expert Syst., vol. 36, no. 2, p. e12365, 2019.

[32]

C. Yan, X. Cui, L. Qi, X. Xu, and X. Zhang, Privacy-aware data publishing and integration for collaborative service recommendation, IEEE Access, vol. 6, pp. 43021–43028, 2018.

[33]

J. Sun and Y. Zhang, Recommendation system with biclustering, Big Data Mining and Analytics, vol. 5, no. 4, pp. 282–293, 2022.

[34]
C. Zan, Development of e-commerce big data model based on machine learning and user recommendation algorithm, Int. J. Syst. Assur. Eng. Manag.
[35]

B. Yi, X. Shen, H. Liu, Z. Zhang, W. Zhang, S. Liu, and N. Xiong, Deep matrix factorization with implicit feedback embedding for recommendation system, IEEE Trans. Ind. Inf., vol. 15, no. 8, pp. 4591–4601, 2019.

[36]
M. Hu, D. Wu, R. Wu, Z. Shi, M. Chen, and Y. Zhou, RAP: A light-weight privacy-preserving framework for recommender systems, IEEE Trans. Serv. Comput., vol. 15, no. 5, pp. 2969–2981, 2022.
[37]

L. Yao, X. Wang, Q. Z. Sheng, B. Benatallah, and C. Huang, Mashup recommendation by regularizing matrix factorization with API co-invocations, IEEE Trans. Serv. Comput., vol. 14, no. 2, pp. 502–515, 2021.

[38]

X. Shen, B. Yi, H. Liu, W. Zhang, Z. Zhang, S. Liu, and N. Xiong, Deep variational matrix factorization with knowledge embedding for recommendation system, IEEE Trans. Knowledge Data Eng., vol. 33, no. 5, pp. 1906–1918, 2021.

[39]

J. Guan, X. Huang, and B. Chen, Community-aware social recommendation: A unified SCSVD framework, IEEE Trans. Knowledge Data Eng., vol. 35, no. 3, pp. 2379–2393, 2023.

[40]

D. Lian, X. Xie, and E. Chen, Discrete matrix factorization and extension for fast item recommendation, IEEE Trans. Knowledge Data Eng., vol. 33, no. 5, pp. 1919–1933, 2021.

[41]

J. Jiao, X. Zhang, F. Li, and Y. Wang, A novel learning rate function and its application on the SVD++ recommendation algorithm, IEEE Access, vol. 8, pp. 14112–14122, 2020.

[42]

V. Ioannidis, A. Zamzam, G. Giannakis, and N. Sidiropoulos, Coupled graphs and tensor factorization for recommender systems and community detection, IEEE Trans. Knowledge Data Eng., vol. 33, no. 3, pp. 909–920, 2021.

[43]

S. Li, J. Wen, F. Luo, and G. Ranzi, Time-aware QoS prediction for cloud service recommendation based on matrix factorization, IEEE Access, vol. 6, pp. 77716–77724, 2018.

[44]

S. Meng, H. Wang, Q. Li, Y. Luo, W. Dou, and S. Wan, Spatial-temporal aware intelligent service recommendation method based on distributed tensor factorization for big data applications, IEEE Access, vol. 6, pp. 59462–59474, 2018.

[45]

Y. Yang, L. Han, Z. Gou, B. Duan, J. Zhu, and H. Yan, Tagrec-CMTF: Coupled matrix and tensor factorization for tag recommendation, IEEE Access, vol. 6, pp. 64142–64152, 2018.

[46]

L. Qi, X. Xu, X. Zhang, W. Dou, C. Hu, Y. Zhou, and J. Yu, Structural balance theory-based e-commerce recommendation over big rating data, IEEE Trans. Big Data, vol. 4, no. 3, pp. 301–312, 2018.

[47]
X. Wu and Z. Wu, Application of big data search based on collaborative filtering algorithm in cross-border e-commerce product recommendation, Soft Comput.
[48]

M. Hong and J. Jung, Towards social big data-based affective group recommendation, Mobile Network. Appl., vol. 23, no. 4, pp. 1111–1122, 2018.

[49]
H. Chen, Y. Li, X. Sun, G. Xu, and H. Yin, Temporal meta-path guided explainable recommendation, in Proc. 14 th ACM Int. Conf. Web Search and Data Mining, Virtual Event, 2021, pp. 1056–1064.
[50]

L. Qi, Q. He, F. Chen, X. Zhang, W. Dou, and Q. Ni, Data-driven web APIs recommendation for building web applications, IEEE Trans. Big Data, vol. 8, no. 3, pp. 685–698, 2022.

[51]

X. Zhou, W. Liang, S. Huang, and M. Fu, Social recommendation with large-scale group decision-making for cyber-enabled online service, IEEE Trans. Comput. Soc. Syst., vol. 6, no. 5, pp. 1073–1082, 2019.

[52]
Z. Peng, Y. Yang, L. Yang, and K. Chen, Federated meta embedding concept stock recommendation, IEEE Trans. Big Data.
[53]

W. Zhu, Research on multi-source mobile commerce service recommendation model of data fusion based on tree network, Concurrency Computat. Pract. Exper., vol. 34, no. 13, p. e5862, 2022.

[54]

R. Song, T. Li, X. Dong, and Z. Ding, An effective points of interest recommendation approach based on embedded meta-path of spatiotemporal data, Expert Syst., vol. 40, no. 2, p. e13145, 2023.

[55]

B. Wang, S. Song, S. Liu, and X. Deng, MultiFDF: Multi-community clustering for fairness-aware recommendation, IEEE Trans. Comput. Soc. Syst., vol. 10, no. 6, pp. 2959–2970, 2023.

[56]

I. Varlamis, C. Sardianos, C. Chronis, G. Dimitrakopoulos, Y. Himeur, A. Alsalemi, F. Bensaali, and A. Amira, Using big data and federated learning for generating energy efficiency recommendations, Int. J. Data Sci. Anal., vol. 16, no. 3, pp. 353–369, 2023.

[57]

G. Sumathi and J. Akilandeswari, Improved fuzzy weighted-iterative association rule based ontology postprocessing in data mining for query recommendation applications, Comput. Intell., vol. 36, no. 2, pp. 773–782, 2020.

[58]
H. Zhang, T. Huang, Z. Lv, S. Liu, and Z. Zhou, MCRS: A course recommendation system for MOOCs, Multimed. Tools Appl., vol. 77, no. 6, pp. 7051–7069, 2018.
[59]

S. H. Liao and C. A. Yang, Big data analytics of social network marketing and personalized recommendations, Soc. Network Anal. Min., vol. 11, p. 21, 2021.

[60]

P. K. Jain, G. Srivastava, J. C. W. Lin, and R. Pamula, Unscrambling customer recommendations: A novel LSTM ensemble approach in airline recommendation prediction using online reviews, IEEE Trans. Comput. Soc. Sys., vol. 9, no. 6, pp. 1777–1784, 2022.

[61]

R. A. Da Silva, A. M. De Paula Canuto, C. A. Da Silveira Barreto, and J. C. Xavier-Junior, Automatic recommendation method for classifier ensemble structure using meta-learning, IEEE Access, vol. 9, pp. 106254–106268, 2021.

[62]

Q. Huang, Y. Xu, Y. Chen, H. Zhang, and F. Min, An adaptive mechanism for recommendation algorithm ensemble, IEEE Access, vol. 7, pp. 10331–10342, 2019.

[63]

Z. Huang, G. Shan, J. Cheng, and J. Sun, TRec: An efficient recommendation system for hunting passengers with deep neural networks, Neural Comput. Appl., vol. 31, no. Suppl1, pp. 209–222, 2019.

[64]

G. Li, T. Zhu, J. Hua, T. Yuan, Z. Niu, T. Li, and H. Zhang, Asking images: Hybrid recommendation system for tourist spots by hierarchical sampling statistics and multimodal visual Bayesian personalized ranking, IEEE Access, vol. 7, pp. 126539–126560, 2019.

[65]
X. Wang, C. Gao, J. Ding, Y. Li, and D. Jin, CMBPR: Category-aided multi-channel Bayesian personalized ranking for short video recommendation, IEEE Access, vol. 7, pp. 48209–48223, 2019.
[66]

P. Lak, A. Bozanta, C. Kavaklioglu, M. Cevik, A. Basar, M. Petitclerc, and G. Wills, A replication study on implicit feedback recommender systems with application to the data visualization recommendation, Expert Syst., vol. 39, no. 4, p. e12871, 2022.

[67]

M. He, S. Zhang, and Q. Meng, Learning to style-aware Bayesian personalized ranking for visual recommendation, IEEE Access, vol. 7, pp. 14198–14205, 2019.

[68]

H. Liu, Y. Tong, J. Han, P. Zhang, X. Lu, and H. Xiong, Incorporating multi-source urban data for personalized and context-aware multi-modal transportation recommendation, IEEE Trans. Knowledge Data Eng., vol. 34, no. 2, pp. 723–735, 2022.

[69]

A. Motwani, P. K. Shukla, and M. Pawar, Novel framework based on deep learning and cloud analytics for smart patient monitoring and recommendation (SPMR), J. Ambient Intell. Human. Comput., vol. 14, no. 5, pp. 5565–5580, 2023.

[70]

K. Gao, X. Yang, C. Wu, T. Qiao, X. Chen, M. Yang, and L. Chen, Exploiting location-based context for POI recommendation when traveling to a new region, IEEE Access, vol. 8, pp. 52404–52412, 2020.

[71]

S. Y. Chou, J. S. R. Jang, and Y. H. Yang, Fast tensor factorization for large-scale context-aware recommendation from implicit feedback, IEEE Trans. Big Data, vol. 6, no. 1, pp. 201–208, 2020.

[72]

M. Zhang, S. Wu, M. Gao, X. Jiang, K. Xu, and L. Wang, Personalized graph neural networks with attention mechanism for session-aware recommendation, IEEE Trans. Knowledge Data Eng., vol. 34, no. 8, pp. 3946–3957, 2022.

[73]

J. H. Chiang, C. Y. Ma, C. S. Wang, and P. Y. Hao, An adaptive, context-aware, and stacked attention network-based recommendation system to capture users’ temporal preference, IEEE Trans. Knowledge Data Eng., vol. 35, no. 4, pp. 3404–3418, 2023.

[74]

W. Liu, Z. Lin, H. Zhu, J. Wang, and A. K. Sangaiah, Attention-based adaptive memory network for recommendation with review and rating, IEEE Access, vol. 8, pp. 113953–113966, 2020.

[75]

D. Yin and S. Feng, Enhanced attention framework for multi-interest sequential recommendation, IEEE Access, vol. 10, pp. 67703–67712, 2022.

[76]

X. Wang, Y. Sheng, H. Deng, and Z. Zhao, Top-N-targets-balanced recommendation based on attentional sequence-to-sequence learning, IEEE Access, vol. 7, pp. 120262–120272, 2019.

[77]

Z. Cui, X. Sun, H. Chen, L. Pan, L. Cui, S. Liu, and G. Xu, Dynamic recommendation based on graph diffusion and Ebbinghaus curve, IEEE Trans. Comput. Soc. Syst., vol. 11, no. 2, pp. 2755–2764, 2024.

[78]

Z. Wang, Z. Wang, X. Li, Z. Yu, B. Guo, L. Chen, and X. Zhou, Exploring multi-dimension user-item interactions with attentional knowledge graph neural networks for recommendation, IEEE Trans. Big Data, vol. 9, no. 1, pp. 212–226, 2023.

[79]

L. Sang, M. Xu, S. Qian, and X. Wu, Adversarial heterogeneous graph neural network for robust recommendation, IEEE Trans. Comput. Soc. Syst., vol. 10, no. 5, pp. 2660–2671, 2023.

[80]

R. Xie, Q. Liu, S. Liu, Z. Zhang, P. Cui, B. Zhang, and L. Lin, Improving accuracy and diversity in matching of recommendation with diversified preference network, IEEE Trans. Big Data, vol. 8, no. 4, pp. 955–967, 2022.

[81]

I. U. Rehman, M. S. Hanif, Z. Ali, Z. Jan, C. B. Mawuli, and W. Ali, Empowering neural collaborative filtering with contextual features for multimedia recommendation, Multimed. Syst., vol. 29, no. 4, pp. 2375–2388, 2023.

[82]

L. Wu, X. He, X. Wang, K. Zhang, and M. Wang, A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation, IEEE Trans. Knowledge Data Eng., vol. 35, no. 5, pp. 4425–4445, 2023.

[83]

T. M. Selvi and V. Kavitha, A privacy-aware deep learning framework for health recommendation system on analysis of big data, Vis. Comput., vol. 38, no. 2, pp. 385–403, 2022.

[84]

B. Dong, Y. Zhu, L. Li, and X. Wu, Hybrid collaborative recommendation via dual-autoencoder, IEEE Access, vol. 8, pp. 46030–46040, 2020.

[85]

M. D. Nguyen and Y. S. Cho, A variational autoencoder mixture model for online behavior recommendation, IEEE Access, vol. 8, pp. 132736–132747, 2020.

[86]

A. Drif, H. E. Zerrad, and H. Cherifi, EnsVAE: Ensemble variational autoencoders for recommendations, IEEE Access, vol. 8, pp. 188335–188351, 2020.

[87]

W. Zeng, J. Qin, and C. Wei, Neural collaborative autoencoder for recommendation with co-occurrence embedding, IEEE Access, vol. 9, pp. 163316–163324, 2021.

[88]

C. Zhang, X. Wu, W. Yan, L. Wang, and L. Zhang, Attribute-aware graph recurrent networks for scholarly friend recommendation based on internet of scholars in scholarly big data, IEEE Trans. Ind. Inf., vol. 16, no. 4, pp. 2707–2715, 2020.

[89]

W. X. Zhao, S. Li, Y. He, E. Y. Chang, J. Wen, and X. Li, Connecting social media to e-commerce: Cold-start product recommendation using microblogging information, IEEE Trans. Knowledge Data Eng., vol. 28, no. 5, pp. 1147–1159, 2016.

[90]

L. Shen, Q. Liu, G. Chen, and S. Ji, Text-based price recommendation system for online rental houses, Big Data Mining and Analytics, vol. 3, no. 2, pp. 143–152, 2020.

[91]

X. Chen, Z. Wang, H. Xu, J. Zhang, Y. Zhang, W. X. Zhao, and J. R. Wen, Data augmented sequential recommendation based on counterfactual thinking, IEEE Trans. Knowledge Data Eng., vol. 35, no. 9, pp. 9181–9194, 2023.

[92]
C. Xu, L. Xu, Y. Lu, H. Xu, and Z. Zhu, E-government recommendation algorithm based on probabilistic semantic cluster analysis in combination of improved collaborative filtering in big-data environment of government affairs, Pers. Ubiquitous Comput., vol. 23, nos. 3&4, pp. 475–485, 2019.
[93]

C. Cheng, Y. Lin, and C. Liao, Seq2CASE: Weakly supervised sequence to commentary aspect score estimation for recommendation, IEEE Trans. Big Data, vol. 9, no. 6, pp. 1670–1682, 2023.

[94]

R. Rang, L. Xing, L. Zhang, H. Cai, and Z. Sun, Heterogeneous multi-behavior recommendation based on graph convolutional networks, IEEE Access, vol. 11, pp. 22574–22584, 2023.

[95]

K. Liu, F. Xue, X. He, D. Guo, and R. Hong, Joint multi-grained popularity-aware graph convolution collaborative filtering for recommendation, IEEE Trans. Comput. Soc. Syst., vol. 10, no. 1, pp. 72–83, 2023.

[96]

Z. Yang, Y. Wang, Y. Cheng, T. Zhang, and X. Wang, Recommendation model based on enhanced graph convolution that fuses review properties, IEEE Trans. Comput. Soc. Syst., vol. 10, no. 5, pp. 2266–2278, 2023.

[97]

X. Chen, J. Tian, X. Tian, and S. Liu, Fusing user reviews into heterogeneous information network recommendation model, IEEE Access, vol. 10, pp. 63672–63683, 2022.

[98]

S. H. Ahammad, S. Dwarkanath, R. Joshi, B. T. P. Madhav, P. P. Priya, O. S. Faragallah, M. M. A. Eid, and A. N. Z. Rashed, Social media reviews based hotel recommendation system using collaborative filtering and big data, Multimed. Tools Appl., vol. 83, no. 10, pp. 29569–29582, 2023.

[99]
C. Wang, F. Feng, Y. Zhang, Q. Wang, X. Hu, and X. He, Rethinking missing data: Aleatoric uncertainty-aware recommendation, arXiv preprint arXiv: 2209.11679, 2023.
[100]

X. Zhou, W. Liang, K. I. K. Wang, and L. T. Yang, Deep correlation mining based on hierarchical hybrid networks for heterogeneous big data recommendations, IEEE Trans. Comput. Soc. Syst., vol. 8, no. 1, pp. 171–178, 2021.

[101]

D. Wang, K. Liu, H. Xiong, and Y. Fu, Online POI recommendation: Learning dynamic geo-human interactions in streams, IEEE Trans. Big Data, vol. 9, no. 3, pp. 832–844, 2023.

[102]

Q. Meng, H. Yan, B. Liu, X. Sun, M. Hu, and J. Cao, Recognize news transition from collective behavior for news recommendation, ACM Trans. Inf. Syst., vol. 41, no. 4, p. 93, 2023.

[103]

S. Sun, Y. Tang, Z. Dai, and F. Zhou, Self-attention network for session-based recommendation with streaming data input, IEEE Access, vol. 7, pp. 110499–110509, 2019.

[104]

H. Wang, Y. Li, and F. Frimpong, Group recommendation via self-attention and collaborative metric learning model, IEEE Access, vol. 7, pp. 164844–164855, 2019.

[105]
Z. Yang, L. Cui, X. Wang, T. Zhang, and Y. Cheng, MIAR: Interest-activated news recommendation by fusing multichannel information, IEEE Trans. Comput. Soc. Syst., vol. 10, no. 6, pp. 3433–3443, 2023.
[106]

Z. Cui, X. Sun, L. Pan, S. J. Liu, and G. Xu, Event-based incremental recommendation via factors mixed Hawkes process, Inf. Sci., vol. 639, p. 119007, 2023.

[107]

Q. Mei, Q. Hu, C. Yang, H. Zheng, and Z. Hu, Port recommendation system for alternative container port destinations using a novel neural language-based algorithm, IEEE Access, vol. 8, pp. 199970–199979, 2020.

[108]

Z. Zhu and Y. Sun, Personalized information push system for education management based on big data mode and collaborative filtering algorithm, Soft Comput., vol. 27, no. 14, pp. 10057–10067, 2023.

[109]

D. Xia, B. Shen, Y. Zheng, W. Zhang, D. Bai, Y. Hu, and H. Li, A bidirectional-a-star-based ant colony optimization algorithm for big-data-driven taxi route recommendation, Multimed. Tools Appl., vol. 83, no. 6, pp. 16313–16335, 2023.

[110]

M. Rostami, M. Oussalah, and V. Farrahi, A novel time-aware food recommender-system based on deep learning and graph clustering, IEEE Access, vol. 10, pp. 52508–52524, 2022.

[111]

K. Sinaga and M. Yang, Unsupervised K-means clustering algorithm, IEEE Access, vol. 8, pp. 80716–80727, 2020.

[112]

C. Morselli and C. Giguere, Legitimate strengths in criminal networks, Crime, Law and Social Change, vol. 45, no. 3, pp. 185–200, 2006.

[113]
Recommendations: Netflix research, https://research.netflix.com/research-area/recommendations, 2024.
[114]
S. Bouguezzi, How does the amazon recommendation system work? https://www.baeldung.com/cs/amazon-recommendation-system, 2024.
[115]
P. Mangla, Spotify Music Recommendation Systems, PyimageSearch, https://pyimagesearch.com/2023/10/30/spotify-music-recommendation-systems/, 2024.
[116]
B. Valarmathi and T. Chellatamilan, Classification of e-commerce online auctions and prediction of seller reputation, computer science, business, economics, https://repository.biust.ac.bw/bitstream/handle/123456789/158/65_Valarmathi%20B_Classification%20of%20e-commerce%20Online.pdf?sequence=1&isAllowed=y, 2024.
[117]
N. Entezari, E. E. Papalexakis, H. Wang, S. Rao, and S. K. Prasad, Tensor-based complementary product recommendation, in Proc. 2021 IEEE Int. Conf. Big Data (Big Data ), Orlando, FL, USA, 2021, pp. 409–415.
[118]
L. Wu, Browsemap: Collaborative filtering at LinkedIn, https://engineering.linkedin.com/recommender-systems/browsemap-collaborative-filtering-linkedin, 2024.
[119]
V. Pavlik, What is the Google knowledge graph & how does it work? https://kenpeluso.me/what-is-the-google-knowledge-graph-how-does-it-work/, 2024.
[120]
Guneet Lamba, Strategies for seasonal pricing for Airbnb for high and low-season, https://hello.pricelabs.co/seasonal-pricing-airbnb-for-high-and-low-season/, 2024.
[121]
App rating prediction on Google store, https://medium.com/@insight_imi/app-rating-prediction-on-google-store-data-d6cde5050dba, 2024.
[122]
The guide to YouTube SEO ranking, https://www.fatrank.com/ranking-youtube-videos-in-google-search/, 2024.
[123]
Food discovery with Uber Eats: Recommending for the marketplace, https://www.uber.com/en-AE/blog/uber-eats-recommending-marketplace/, 2018.
[124]
Y. Wang, Friend Recommendation using GraphSAGE, Stanford CS224W GraphML Tutorials, https://medium.com/stanford-cs224w/friend-recommendation-using-graphsage-ffcda2aaf8d6, 2024.
[125]
P. Soni, Mastering recommendation engines with neural collaborative filtering, towards AI, https://pub.towardsai.net/mastering-recommendation-engines-with-neural-collaborative-filtering-059c4f11a470, 2024.
[126]

S. Chakraborty, M. S. Hoque, N. R. Jeem, M. C. Biswas, D. Bardhan, and E. Lobaton, Fashion recommendation systems, models and methods: A review, Informatics, vol. 8, no. 3, p. 49, 2021.

[127]
Ö. H. Cinar, Session-based recommender systems with recurrent neural networks, Medium 2023, https://medium.com/@omerhalidcinar/session-based-recommender-systems-with-recurrent-neural-networks-4c756dbdd7c9, 2024.
[128]
K. Iman, Advances in next-track music recommendation (2017), https://ouci.dntb.gov.ua/en/works/98qnBA17/, 2017.
[129]
R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, Graph convolutional neural networks for web-scale recommender systems, in Proc. 24 th ACM SIGKDD Int. Conf. Knowledge Discovery & Data Mining, London, UK, 2018, pp. 974–983.
[130]
F. Daolio, Deep learning for fashion attributes, https://medium.com/asos-techblog/deep-learning-for-fashion-attributes-763c8c95034c, 2024.
[131]

C. Yin and J. Han, Dynamic pricing model of e-commerce platforms based on deep reinforcement learning, Comput. Model. Eng. Sci., vol. 127, no. 1, pp. 291–307, 2021.

[132]
W. C. Kang and J. McAuley, Self-attentive sequential recommendation, in Proc. 2018 IEEE Int. Conf. Data Mining (ICDM ), Singapore, 2018, pp. 197–206.
[133]
Market research solutions, how cluster analysis identifies market and customer segments, https://www.surveymonkey.com/market-research/resources/how-cluster-analysis-identifies-market-and-customer-segments/, 2024.
Big Data Mining and Analytics
Pages 964-1014
Cite this article:
Taha K, Yoo PD, Yeun C, et al. Empirical and Experimental Perspectives on Big Data in Recommendation Systems: A Comprehensive Survey. Big Data Mining and Analytics, 2024, 7(3): 964-1014. https://doi.org/10.26599/BDMA.2024.9020009

65

Views

8

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 29 December 2023
Revised: 02 February 2024
Accepted: 20 February 2024
Published: 28 August 2024
© The author(s) 2024.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return