Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
With the advancement of computational network science, its research scope has significantly expanded beyond static graphs to encompass more complex structures. The introduction of streaming, temporal, multilayer, and hypernetwork approaches has brought new possibilities and imposed additional requirements. For instance, by utilising these advancements, one can model structures such as social networks in a much more refined manner, which is particularly relevant in simulations of the spreading processes. Unfortunately, the pace of advancement is often too rapid for existing computational packages to keep up with the functionality updates. This results in a significant proliferation of tools used by researchers and, consequently, a lack of a universally accepted technological stack that would standardise experimental methods (as seen, e.g., in machine learning). This article addresses that issue by presenting an extended version of the Network Diffusion library. First, a survey of the existing approaches and toolkits for simulating spreading phenomena is shown, and then, an overview of the framework functionalities. Finally, we report four case studies conducted with the package to demonstrate its usefulness: the impact of sanitary measures on the spread of COVID-19, the comparison of information diffusion on two temporal network models, and the effectiveness of seed selection methods in the task of influence maximisation in multilayer networks. We conclude the paper with a critical assessment of the library and the outline of still awaiting challenges to standardise research environments in computational network science.
R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett., vol. 86, no. 14, pp. 3200–3203, 2001.
M. Nurek, R. Michalski, O. Lizardo, and M. A. Rizoiu, Predicting relationship labels and individual personality traits from telecommunication history in social networks using hawkes processes, IEEE Access, vol. 11, pp. 8492–8503, 2023.
S. Forouzandeh, K. Berahmand, R. Sheikhpour, and Y. Li, A new method for recommendation based on embedding spectral clustering in heterogeneous networks (RESCHet), Expert Syst. Appl., vol. 231, p. 120699, 2023.
M. Rostami, U. Muhammad, S. Forouzandeh, K. Berahmand, V. Farrahi, and M. Oussalah, An effective explainable food recommendation using deep image clustering and community detection, Intell. Syst. Appl., vol. 16, p. 200157, 2022.
C. Zhong, S. M. Arisona, X. Huang, M. Batty, and G. Schmitt, Detecting the dynamics of urban structure through spatial network analysis, Int. J. Geogr. Inf. Sci., vol. 28, no. 11, pp. 2178–2199, 2014.
S. S. Singh, D. Srivastva, M. Verma, and J. Singh, Influence maximization frameworks, performance, challenges and directions on social network: A theoretical study, J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 9, pp. 7570–7603, 2022.
P. Brodka, K. Musial, and J. Jankowski, Interacting spreading processes in multilayer networks: A systematic review, IEEE Access, vol. 8, pp. 10316–10341, 2020.
M. Granovetter, Threshold models of collective behavior, Am J Sociol, vol. 83, no. 6, pp. 1420–1443, 1978.
Y. D. Zhong, V. Srivastava, and N. E. Leonard, Influence spread in the heterogeneous multiplex linear threshold model, IEEE Trans. Control Netw. Syst., vol. 9, no. 3, pp. 1080–1091, 2022.
K. J. S. Zollman, The communication structure of epistemic communities, Philos. Sci., vol. 74, no. 5, pp. 574–587, 2007.
R. Michalski, D. Serwata, M. Nurek, B. K. Szymanski, P. Kazienko, and T. Jia, Temporal network epistemology: On reaching consensus in a real-world setting, Chaos, vol. 32, no. 6, p. 063135, 2022.
J. C. Nacher and T. Akutsu, Dominating scale-free networks with variable scaling exponent: Heterogeneous networks are not difficult to control, New J. Phys., vol. 14, no. 7, p. 073005, 2012.
R. Michalski, B. K. Szymanski, P. Kazienko, C. Lebiere, O. Lizardo, and M. Kulisiewicz, Social networks through the prism of cognition, Complexity, vol. 2021, p. 4963903, 2021.
W. Van den Broeck, C. Gioannini, B. Goncalves, M. Quaggiotto, V. Colizza, and A. Vespignani, The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale, BMC Infect Dis, vol. 11, no. 1, p. 37, 2011.
G. Rossetti, L. Milli, S. Rinzivillo, A. Sîrbu, D. Pedreschi, and F. Giannotti, NDlib: A python library to model and analyze diffusion processes over complex networks, Int. J. Data Sci. Anal., vol. 5, no. 1, pp. 61–79, 2018.
S. Widgren, P. Bauer, R. Eriksson, and S. Engblom, SimInf: An R package for data-driven stochastic disease spread simulations, J. Stat. Softw., vol. 91, no. 12, pp. 1–42, 2019.
F. P. Alvarez, P. Crépey, M. Barthélemy, and A. J. Valleron, Sispread: A software to simulate infectious diseases spreading on contact networks, Methods Inf. Med., vol. 46, no. 1, pp. 19–26, 2007.
J. V. Douglas, S. Bianco, S. Edlund, T. Engelhardt, M. Filter, T. Günther, K. Hu, E. J. Nixon, N. L. Sevilla, A. Swaid, et al., STEM: An open source tool for disease modeling, Health Secur., vol. 17, no. 4, pp. 291–306, 2019.
S. M. Jenness, S. M. Goodreau, and M. Morris, EpiModel: An R package for mathematical modeling of infectious disease over networks, J. Stat. Softw., vol. 84, p. 8, 2018.
D. K. Chu, E. A. Akl, S. Duda, K. Solo, S. Yaacoub, H. J. Schunemann, Schunemann, and COVID-19 Systematic Urgent Review Group Effort (SURGE) study authors, physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis, Lancet, vol. 395, no. 10242, pp. 1973–1987, 2020.
D. J. McGrail, J. Dai, K. M. McAndrews, and R. Kalluri, Enacting national social distancing policies corresponds with dramatic reduction in COVID19 infection rates, PLoS One, vol. 15, no. 7, p. e0236619, 2020.
M. Alene, L. Yismaw, M. A. Assemie, D. B. Ketema, B. Mengist, B. Kassie, and T. Y. Birhan, Magnitude of asymptomatic COVID-19 cases throughout the course of infection: A systematic review and meta-analysis, PLoS One, vol. 16, no. 3, p. e0249090, 2021.
P. Holme and J. Saramaki, Temporal networks, Phys. Rep., vol. 519, no. 3, pp. 97–125, 2012.
R. Michalski, T. Kajdanowicz, P. Bródka, and P. Kazienko, Seed selection for spread of influence in social networks: Temporal vs. static approach, New Gener. Comput., vol. 32, nos. 3&4, pp. 213–235, 2014.
I. Scholtes, N. Wider, R. Pfitzner, A. Garas, C. J. Tessone, and F. Schweitzer, Causality-driven slow-down and speed-up of diffusion in non-Markovian temporal networks, Nat. Commun., vol. 5, no. 1, p. 5024, 2014.
F. Karimi and P. Holme, Threshold model of cascades in empirical temporal networks, Physica A, vol. 392, no. 16, p. 3476–3483, 2013.
M. Nurek and R. Michalski, Combining machine learning and social network analysis to reveal the organizational structures, Appl. Sci., vol. 10, no. 5, p. 1699, 2020.
R. Albert and A. L. Barabasi, Statistical mechanics of complex networks, Rev. Mod. Phys., vol. 74, no. 1, pp. 47–97, 2002.
S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang, Complex networks: Structure and dynamics, Phys. Rep., vol. 424, nos. 4&5, pp. 175–308, 2006.
Z. Liu, X. Wu, and P. M. Hui, An alternative approach to characterize the topology of complex networks and its application in epidemic spreading, Front. Comput. Sci. China, vol. 3, no. 3, pp. 324–334, 2009.
L. Lü, D. Chen, X. L. Ren, Q. M. Zhang, Y. C. Zhang, and T. Zhou, Vital nodes identification in complex networks, Phys. Rep., vol. 650, pp. 1–63, 2016.
S. Forouzandeh, A. Sheikhahmadi, A. R. Aghdam, and S. Xu, New centrality measure for nodes based on user social status and behavior on Facebook, Int. J. Web Inf. Syst., vol. 14, no. 2, pp. 158–176, 2018.
K. Berahmand, N. Samadi, and S. M. Sheikholeslami, Effect of rich-club on diffusion in complex networks, Int. J. Mod. Phys. B, vol. 32, no. 12, p. 1850142, 2018.
B. Wang, L. Gao, Q. Zhang, A. Li, Y. Deng, and X. Guo, Diversified control paths: A significant way disease genes perturb the human regulatory network, PLoS One, vol. 10, no. 8, p. e0135491, 2015.
S. Wuchty, Controllability in protein interaction networks, Proc. Natl. Acad. Sci. USA, vol. 111, no. 19, pp. 7156–7160, 2014.
L. Rossi and M. Magnani, Towards effective visual analytics on multiplex and multilayer networks, Chaos Solitons Fractals, vol. 72, pp. 68–76, 2015.
T. A. B. Snijders, P. E. Pattison, G. L. Robins, and M. S. Handcock, New specifications for exponential random graph models, Sociological Methodology, vol. 36, no. 1, pp. 99–153, 2006.
U. Brandes, A faster algorithm for betweenness centrality, J. Math. Sociol., vol. 25, no. 2, pp. 163–177, 2001.
L. C. Freeman, Centrality in social networks conceptual clarification, Soc. Netw., vol. 1, no. 3, pp. 215–239, 1978.
J. X. Zhang, D. B. Chen, Q. Dong, and Z. D. Zhao, Identifying a set of influential spreaders in complex networks, Sci. Rep., vol. 6, p. 27823, 2016.
K. Berahmand, A. Bouyer, and N. Samadi, A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks, Chaos Solitons Fractals, vol. 110, p. 41–54, 2018.
P. Bródka, J. Jankowski, and R. Michalski, Sequential seeding in multilayer networks, Chaos, vol. 31, no. 3, p. 033130, 2021.
C. O’Connor and J. Weatherall, Scientific polarization, Eur. J. Philos. Sci., vol. 8, no. 3, p. 855–875, 2018.
J. O. Weatherall, C. O’Connor, and J. Bruner, How to beat science and influence people: Policymakers and propaganda in epistemic networks, Br. J. Philos. Sci., vol. 71, no. 4, pp. 1157–1186, 2020.
P. Erdös and A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci., vol. 5, no. 1, pp. 17–60, 1960.
243
Views
58
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).