Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Accurately diagnosing Alzheimer’s disease is essential for improving elderly health. Meanwhile, accurate prediction of the mini-mental state examination score also can measure cognition impairment and track the progression of Alzheimer’s disease. However, most of the existing methods perform Alzheimer’s disease diagnosis and mini-mental state examination score prediction separately and ignore the relation between these two tasks. To address this challenging problem, we propose a novel multi-task learning method, which uses feature interaction to explore the relationship between Alzheimer’s disease diagnosis and mini-mental state examination score prediction. In our proposed method, features from each task branch are firstly decoupled into candidate and non-candidate parts for interaction. Then, we propose feature sharing module to obtain shared features from candidate features and return shared features to task branches, which can promote the learning of each task. We validate the effectiveness of our proposed method on multiple datasets. In Alzheimer’s disease neuroimaging initiative 1 dataset, the accuracy in diagnosis task and the root mean squared error in prediction task of our proposed method is 87.86% and 2.5, respectively. Experimental results show that our proposed method outperforms most state-of-the-art methods. Our proposed method enables accurate Alzheimer’s disease diagnosis and mini-mental state examination score prediction. Therefore, it can be used as a reference for the clinical diagnosis of Alzheimer’s disease, and can also help doctors and patients track disease progression in a timely manner.
A. Brugnolo, B. Orso, N. Girtler, P. M. Ferraro, D. Arnaldi, P. Mattioli, F. Massa, F. Famà, L. Argenti, G. Biffa, et al., Tracking the progression of Alzheimer’s disease: Insights from metabolic patterns of SOMI stages, Cortex, vol. 171, pp. 413–422, 2024.
X. Yang, J. Gan, and Y. Ji, Association between cerebrospinal fluid pressure and cognition in patients with Alzheimer’s disease and Lewy body dementia, BMC Neurol., vol. 24, no. 1, p. 35, 2024.
M. Coccia, Sources of technological innovation: Radical and incremental innovation problem-driven to support competitive advantage of firms, Technol. Anal. Strateg. Manag., vol. 29, no. 9, pp. 1048–1061, 2017.
P. Scheltens, B. De Strooper, M. Kivipelto, H. Holstege, G. Chételat, C. E. Teunissen, J. Cummings, and W. M. van der Flier, Alzheimer’s disease, Lancet, vol. 397, no. 10284, pp. 1577–1590, 2021.
A. Jannati, C. Toro-Serey, J. Gomes-Osman, R. Banks, M. Ciesla, J. Showalter, D. Bates, S. Tobyne, and A. Pascual-Leone, Digital cock and recall is superior to the mini-mental state examination for the detection of mild cognitive impairment and mild dementia, Alzheimers Res. Ther., vol. 16, no. 1, p. 2, 2024.
M. Coccia, Problem-driven innovations in drug discovery: Co-evolution of the patterns of radical innovation with the evolution of problems, Health Policy Technol., vol. 5, no. 2, pp. 143–155, 2016.
Y. J. Kim, K. Y. So, H. M. Lee, C. Hahn, S. H. Song, Y. S. Lee, S. W. Kim, H. C. Park, J. Ryu, J. S. Lee, et al., Changes in dementia treatment patterns associated with changes in the National Policy in South Korea among patients with newly diagnosed Alzheimer’s disease between 2011 and 2017: Results from the multicenter. retrospective CAPTAIN study, BMC Public Health, vol. 24, no. 1, p. 168, 2024.
Q. Li, J. Zhan, Y. Feng, Z. Liao, and X. Li, The association of body mass index with cognition and Alzheimer’s disease biomarkers in the elderly with different cognitive status: A study from the Alzheimer’s disease neuroimaging initiative database, J. Alzheimers. Dis. Rep., vol. 8, no. 1, pp. 9–24, 2024.
J. Liu, H. Du, R. Guo, H. X. Bai, H. Kuang, and J. Wang, MMGK: Multimodality multiview graph representations and knowledge embedding for mild cognitive impairment diagnosis, IEEE Trans. Comput. Soc. Syst., vol. 11, no. 1, pp. 389–398, 2024.
J. Zhu, J. Wei, J. Mao, K. Liu, H. He, and J. Liu, Applications of deep learning in magnetic resonance imaging-based diagnosis of brain diseases, Chinese Journal of Engineering, vol. 46, no. 2, pp. 306–316, 2024.
X. Chen, G. Ren, Y. Li, W. Chao, S. Chen, X. Li, and S. Xue, Level of LncRNA GAS5 and hippocampal volume are associated with the progression of Alzheimer’s disease, Clin. Interv. Aging, vol. 17, pp. 745–753, 2022.
R. Guo, X. Tian, H. Lin, S. McKenna, H. D. Li, F. Guo, and J. Liu, Graph-based fusion of imaging, genetic and clinical data for degenerative disease diagnosis, IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 21, no. 1, pp. 57–68, 2024.
M. Liu, J. Zhang, C. Lian, and D. Shen, Weakly supervised deep learning for brain disease prognosis using MRI and incomplete clinical scores, IEEE Trans. Cybern., vol. 50, no. 7, pp. 3381–3392, 2020.
J. Liu, J. Wang, Z. Tang, B. Hu, F. X. Wu, and Y. Pan, Improving Alzheimer’s disease classification by combining multiple measures, IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 15, no. 5, pp. 1649–1659, 2018.
P. Yi, L. Jin, T. Xu, L. Wei, and G. Rui, Hippocampal segmentation in brain MRI images using machine learning methods: A survey, Chin. J. Electron., vol. 30, no. 5, pp. 793–814, 2021.
R. Sharma, T. Goel, M. Tanveer, C. T. Lin, and R. Murugan, Deep-learning-based diagnosis and prognosis of Alzheimer’s disease: A comprehensive review, IEEE Trans. Cogn. Dev. Syst., vol. 15, no. 3, pp. 1123–1138, 2023.
Z. Wu, J. Zheng, J. Liu, C. Lin, and H. D. Li, DeepRetention: A deep learning approach for intron retention detection, Big Data Mining and Analytics, vol. 6, no. 2, pp. 115–126, 2023.
S. Vandenhende, S. Georgoulis, W. Van Gansbeke, M. Proesmans, D. Dai, and L. Van Gool, Multi-task learning for dense prediction tasks: A survey, IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 7, pp. 3614–3633, 2022.
R. Ma, R. Xie, Y. Huang, W. Xi, Y. Wei, and Y. Pan, Data augmentation study in structural magnetic resonance imaging based autism spectrum disorder classification, Journal of Integration Technology, vol. 12, no. 6, pp. 33–42, 2023.
A. Khalid, E. M. Senan, K. Al-Wagih, M. M. A. Al-Azzam, and Z. M. Alkhraisha, Automatic analysis of MRI images for early prediction of Alzheimer’s disease stages based on hybrid features of CNN and handcrafted features, Diagnostics, vol. 13, no. 9, p. 1654, 2023.
J. Wen, E. Thibeau-Sutre, M. Diaz-Melo, J. Samper-González, A. Routier, S. Bottani, D. Dormont, S. Durrleman, N. Burgos, O. Colliot, et al., Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation, Med. Image Anal., vol. 63, p. 101694, 2020.
G. Mohi ud din dar, A. Bhagat, S. I. Ansarullah, M. T. B. Othman, Y. Hamid, H. K. Alkahtani, I. Ullah, and H. Hamam, A novel framework for classification of different Alzheimer’s disease stages using CNN model, Electronics, vol. 12, no. 2, p. 469, 2023.
M. Liu, J. Zhang, E. Adeli, and D. Shen, Landmark-based deep multi-instance learning for brain disease diagnosis, Med. Image Anal., vol. 43, pp. 157–168, 2018.
F. Liu, S. Yuan, W. Li, Q. Xu, and B. Sheng, Patch-based deep multi-modal learning framework for Alzheimer’s disease diagnosis using multi-view neuroimaging, Biomed. Signal Process. Contr., vol. 80, p. 104400, 2023.
C. Lian, M. Liu, J. Zhang, and D. Shen, Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI, IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 4, pp. 880–893, 2020.
S. Qiu, P. S. Joshi, M. I. Miller, C. Xue, X. Zhou, C. Karjadi, G. H. Chang, A. S. Joshi, B. Dwyer, S. Zhu, et al., Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification, Brain, vol. 143, no. 6, pp. 1920–1933, 2020.
S. Q. Abbas, L. Chi, and Y. P. P. Chen, Transformed domain convolutional neural network for Alzheimer’s disease diagnosis using structural MRI, Pattern Recognit., vol. 133, p. 109031, 2023.
J. Li, Y. Wei, C. Wang, Q. Hu, Y. Liu, and L. Xu, 3-D CNN-based multichannel contrastive learning for Alzheimer’s disease automatic diagnosis, IEEE Trans. Instrum. Meas., vol. 71, p. 5008411, 2022.
X. Li, Z. Chen, H. Jiao, B. Wang, H. Yin, L. Chen, H. Shi, Y. Yin, and D. Qin, Machine learning in the prediction of post-stroke cognitive impairment: A systematic review and meta-analysis, Front. Neurol., vol. 14, p. 1211733, 2023.
S. Tabarestani, M. Aghili, M. Eslami, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, and M. Adjouadi, A distributed multitask multimodal approach for the prediction of Alzheimer’s disease in a longitudinal study, NeuroImage, vol. 206, p. 116317, 2020.
J. D. Zhu, C. W. Huang, H. I. Chang, S. J. Tsai, S. H. Huang, S. W. Hsu, C. C. Lee, H. J. Chen, C. C. Chang, and A. C. Yang, Functional MRI and ApoE4 genotype for predicting cognitive decline in amyloid-positive individuals, Ther. Adv. Neurol. Disord., vol. 15, pp. 1–15, 2022.
M. Liu, J. Zhang, E. Adeli, and D. Shen, Joint classification and regression via deep multi-task multi-channel learning for Alzheimer’s disease diagnosis, IEEE Trans. Biomed. Eng., vol. 66, no. 5, pp. 1195–1206, 2019.
N. Zeng, H. Li, and Y. Peng, A new deep belief network-based multi-task learning for diagnosis of Alzheimer’s disease, Neural Comput. Appl., vol. 35, no. 16, pp. 11599–11610, 2023.
C. Lian, M. Liu, L. Wang, and D. Shen, Multi-task weakly-supervised attention network for dementia status estimation with structural MRI, IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 8, pp. 4056–4068, 2022.
K. Han, M. He, F. Yang, and Y. Zhang, Multi-task multi-level feature adversarial network for joint Alzheimer’s disease diagnosis and atrophy localization using sMRI, Phys. Med. Biol., vol. 67, no. 8, p. 085002, 2022.
S. El-Sappagh, T. Abuhmed, S. M. R. Islam, and K. S. Kwak, Multimodal multitask deep learning model for Alzheimer’s disease progression detection based on time series data, Neurocomputing, vol. 412, pp. 197–215, 2020.
M. Jenkinson, C. F. Beckmann, T. E. J. Behrens, M. W. Woolrich, and S. M. Smith, FSL, NeuroImage, vol. 62, no. 2, pp. 782–790, 2012.
S. P. Singh, L. Wang, S. Gupta, B. Gulyás, and P. Padmanabhan, Shallow 3D CNN for detecting acute brain hemorrhage from medical imaging sensors, IEEE Sens. J., vol. 21, no. 13, pp. 14290–14299, 2021.
C. Yu, Y. Liu, J. Zhao, S. Wu, and Z. Hu, Feature interaction learning network for cross-spectral image patch matching, IEEE Trans. Image Process., vol. 32, pp. 5564–5579, 2023.
Q. Ma, J. Jiang, X. Liu, and J. Ma, Multi-task interaction learning for spatiospectral image super-resolution, IEEE Trans. Image Process., vol. 31, pp. 2950–2961, 2022.
A. M. Weinstein, S. Gujral, M. A. Butters, C. R. Bowie, C. E. Fischer, A. J. Flint, N. Herrmann, J. L. Kennedy, L. Mah, S. Ovaysikia, et al., Diagnostic precision in the detection of mild cognitive impairment: A comparison of two approaches, Am. J. Geriatr. Psychiatry, vol. 30, no. 1, pp. 54–64, 2022.
157
Views
17
Downloads
0
Crossref
1
Web of Science
0
Scopus
0
CSCD
Altmetrics
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).