Early dental caries detection by endoscope can prevent complications, such as pulpitis and apical infection. However, automatically identifying dental caries remains challenging due to the uncertainty in size, contrast, low saliency, and high interclass similarity of dental caries. To address these problems, we propose the Global Feature Detector (GFDet) that integrates the proposed Feature Selection Pyramid Network (FSPN) and Adaptive Assignment-Balanced Mechanism (AABM). Specifically, FSPN performs upsampling with the semantic information of adjacent feature layers to mitigate the semantic information loss due to sharp channel reduction and enhance discriminative features by aggregating fine-grained details and high-level semantics. In addition, a new label assignment mechanism is proposed that enables the model to select more high-quality samples as positive samples, which can address the problem of easily ignored small objects. Meanwhile, we have built an endoscopic dataset for caries detection, consisting of 1318 images labeled by five dentists. For experiments on the collected dataset, the F1-score of our model is 75.6%, which out-performances the state-of-the-art models by 7.1%.
C. Valkenburg, F. A. van der Weijden, and D. E. Slot, Plaque control and reduction of gingivitis: The evidence for dentifrices, Periodontology 2000, vol. 79, no. 1, pp. 221–232, 2019.
S. Sälzer, C. Graetz, C. E. Dörfer, D. E. Slot, and F. A. Van der Weijden, Contemporary practices for mechanical oral hygiene to prevent periodontal disease, Periodontology 2000, vol. 84, no. 1, pp. 35–44, 2020.
J. E. Frencken, P. Sharma, L. Stenhouse, D. Green, D. Laverty, and T. Dietrich, Global epidemiology of dental caries and severe periodontitis–A comprehensive review, J. Clin. Periodontol., vol. 44, no. S18, pp. S94–S105, 2017.
M. A. Peres, L. M. D. Macpherson, R. J. Weyant, B. Daly, R. Venturelli, M. R. Mathur, S. Listl, R. K. Celeste, C. C. Guarnizo-Herreño, C. Kearns, et al., Oral diseases: A global public health challenge, Lancet, vol. 394, no. 10194, pp. 249–260, 2019.
Y. Miki, C. Muramatsu, T. Hayashi, X. Zhou, T. Hara, A. Katsumata, and H. Fujita, Classification of teeth in cone-beam CT using deep convolutional neural network, Comput. Biol. Med., vol. 80, pp. 24–29, 2017.
J. Krois, T. Ekert, L. Meinhold, T. Golla, B. Kharbot, A. Wittemeier, C. Dörfer, and F. Schwendicke, Deep learning for the radiographic detection of periodontal bone loss, Sci. Rep., vol. 9, no. 1, p. 8495, 2019.
R. Li, J. Zhu, Y. Wang, S. Zhao, C. Peng, Q. Zhou, R. Sun, A. Hao, S. Li, Y. Wang, et al., Development of a deep learning based prototype artificial intelligence system for the detection of dental caries in children, (in Chinese), Chin. J. Stomatol., vol. 56, no. 12, pp. 1253–1260, 2021.
L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs, IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848, 2018.
H. Ding, X. Jiang, B. Shuai, A. Q. Liu, and G. Wang, Semantic segmentation with context encoding and multi-path decoding, IEEE Trans. Image Process., vol. 29, pp. 3520–3533, 2020.
Y. Lai, F. Fan, Q. Wu, W. Ke, P. Liao, Z. Deng, H. Chen, and Y. Zhang, LCANet: Learnable connected attention network for human identification using dental images, IEEE Trans. Med. Imaging, vol. 40, no. 3, pp. 905–915, 2021.
S. Li, Y. Xie, G. Wang, L. Zhang, and W. Zhou, Adaptive multimodal fusion with attention guided deep supervision net for grading hepatocellular carcinoma, IEEE J. Biomed. Health Inform., vol. 26, no. 8, pp. 4123–4131, 2022.
C. Chen, K. Zhou, H. Wang, Y. Lu, Z. Wang, R. Xiao, and T. Lu, TMSF-Net: Multi-series fusion network with treeconnect for colorectal tumor segmentation, Comput. Methods Programs Biomed., vol. 215, p. 106613, 2022.
Y. Xu, Y. Wang, J. Yuan, Q. Cheng, X. Wang, and P. L. Carson, Medical breast ultrasound image segmentation by machine learning, Ultrasonics, vol. 91, pp. 1–9, 2019.
Y. Hu, Y. Guo, Y. Wang, J. Yu, J. Li, S. Zhou, and C. Chang, Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model, Med. Phys., vol. 46, no. 1, pp. 215–228, 2019.
W. Xie, C. Jacobs, J. P. Charbonnier, and B. Van Ginneken, Relational modeling for robust and efficient pulmonary lobe segmentation in CT scans, IEEE Trans. Med. Imaging, vol. 39, no. 8, pp. 2664–2675, 2020.
F. Casalegno, T. Newton, R. Daher, M. Abdelaziz, A. Lodi-Rizzini, F. Schürmann, I. Krejci, and H. Markram, Caries detection with near-infrared transillumination using deep learning, J. Dent. Res., vol. 98, no. 11, pp. 1227–1233, 2019.
X. Zhang, Y. Liang, W. Li, C. Liu, D. Gu, W. Sun, and L. Miao, Development and evaluation of deep learning for screening dental caries from oral photographs, Oral Dis., vol. 28, no. 1, pp. 173–181, 2022.
W. Wang, E. Xie, X. Li, D. P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and L. Shao, PVT v2: Improved baselines with pyramid vision transformer, Computational Visual Media, vol. 8, no. 3, pp. 415–424, 2022.
J. Bernal, J. Sánchez, and F. Vilariño, Towards automatic polyp detection with a polyp appearance model, Pattern Recog., vol. 45, no. 9, pp. 3166–3182, 2012.
J. Bernal, N. Tajkbaksh, F. J. Sanchez, B. J. Matuszewski, H. Chen, L. Yu, Q. Angermann, O. Romain, B. Rustad, I. Balasingham, et al., Comparative validation of polyp detection methods in video colonoscopy: Results from the MICCAI 2015 endoscopic vision challenge, IEEE Trans. Med. Imaging, vol. 36, no. 6, pp. 1231–1249, 2017.
X. Zhang, F. Chen, T. Yu, J. An, Z. Huang, J. Liu, W. Hu, L. Wang, H. Duan, and J. Si, Real-time gastric polyp detection using convolutional neural networks, PLoS One, vol. 14, no. 3, p. e0214133, 2019.
F. Deeba, F. M. Bui, and K. A. Wahid, Computer-aided polyp detection based on image enhancement and saliency-based selection, Biomed. Signal Process. Control, vol. 55, p. 101530, 2020.