PDF (23.1 MB)
Collect
Submit Manuscript
Open Access

A Comprehensive Investigation to Identify Prognostic mRNA and miRNA Signatures for Renal Cell Carcinoma Utilizing a Stratification-Based Approach

Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China
Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University and Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
School of Public Health, Guangdong Medical University, Dongguan 523808, China
Dongguan Key Laboratory of Sepsis Translational Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China

Show Author Information

Abstract

This study systematically investigates the roles of messenger RNAs (mRNAs) and microRNAs (miRNAs) in Renal Cell Carcinoma (RCC) and their potential as diagnostic and prognostic biomarkers via a stratification approach. By utilizing The Cancer Genome Atlas (TCGA) database, differentially expressed mRNAs (namely DEGs) and miRNAs (namely DEMs) are identified, and survival prognosis-related biomarkers are determined through Kaplan-Meier analysis and lasso regression. Prognostic models are established for RCC ethnicity, pathologic stages, and metastatic status, with validation through plotting risk heatmaps, risk curves, survival curves, and Receiver Operating Characteristic (ROC) curves. A total of 45 mRNA and 33 miRNA biomarkers are identified across different prognostic models, resulting in enhanced prediction accuracy with increased stratification. The literature review confirms abnormal expressions of 28 prognostic RNAs reported in experiments and 15 prognostic RNAs reported in bioinformatics studies. The study also introduces 35 novel prognostic RNAs as potential treatment targets for RCC. The mRNA+miRNA prognostic models exhibit the most robust predictive capability, indicating their potential clinical relevance. Overall, the study contributes to a precise prognosis of RCC by exploring novel biomarkers and potential therapeutic targets.

Electronic Supplementary Material

Download File(s)
BDMA-2023-0399_ESM.pdf (26.8 MB)

References

[1]

R. J. Motzer, E. Jonasch, N. Agarwal, A. Alva, M. Baine, K. Beckermann, M. I. Carlo, T. K. Choueiri, B. A. Costello, and I. H. Derweesh, et al., Kidney Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology, J. Natl. Compr. Canc. Netw., vol. 20, no. 1, pp. 71–90, 2022.

[2]

R. L. Siegel, K. D. Miller, N. S. Wagle, and A. Jemal, Cancer statistics, 2023, CA. Cancer J. Clin., vol. 73, no. 1, pp. 17–48, 2023.

[3]

W. H. Chow, L. M. Dong, and S. S. Devesa, Epidemiology and risk factors for kidney cancer, Nat. Rev. Urol., vol. 7, no. 5, pp. 245–257, 2010.

[4]

V. Ficarra, R. Righetti, S. Pilloni, A. D’amico, N. Maffei, G. Novella, L. Zanolla, G. Malossini, and G. Mobilio, Prognostic factors in patients with renal cell carcinoma: Retrospective analysis of 675 cases, Eur. Urol., vol. 41, no. 2, pp. 190–198, 2002.

[5]

J. J. Hsieh, M. P. Purdue, S. Signoretti, C. Swanton, L. Albiges, M. Schmidinger, D. Y. Heng, J. Larkin, and V. Ficarra, Renal cell carcinoma, Nat. Rev. Dis. Primers., vol. 3, p. 17009, 2017.

[6]

P. Zareba and P. Russo, The prognostic significance of nodal disease burden in patients with lymph node metastases from renal cell carcinoma, Urol. Oncol., vol. 37, no. 5, pp. 302.e1–302.e6, 2019.

[7]

N. Robichaud, N. Sonenberg, D. Ruggero, and R. J. Schneider, Translational control in cancer, Cold Spring Harb Perspect Biol., vol. 11, no. 7, p. a032896, 2019.

[8]

X. Ren, X. Chen, Y. Ji, L. Li, Y. Li, C. Qin, and K. Fang, Upregulation of KIF20A promotes tumor proliferation and invasion in renal clear cell carcinoma and is associated with adverse clinical outcome, Aging (Albany NY), vol. 12, no. 24, pp. 25878–25894, 2020.

[9]
Y. Gao, Y. Yan, J. Guo, Q. Zhang, D. Bi, F. Wang, Z. Chang, L. Lu, X. Yao, and Q. Wei, HNF-4α downregulation promotes tumor migration and invasion by regulating E-cadherin in renal cell carcinoma, Oncol. Rep., vol. 42, no. 3, pp. 1066–1074, 2019.
[10]

S. Mishra, T. Yadav, and V. Rani, Exploring miRNA based approaches in cancer diagnostics and therapeutics, Crit. Rev. Oncol. Hematol., vol. 98, pp. 12–23, 2016.

[11]

H. He, L. Wang, W. Zhou, Z. Zhang, L. Wang, S. Xu, D. Wang, J. Dong, C. Tang, H. Tang, X. Yi, and J. Ge, MicroRNA expression profiling in clear cell renal cell carcinoma: Identification and functional validation of key mirNAs, PLoS One, vol. 10, no. 5, p. e0125672, 2015.

[12]
Y. Gao, X. Ma, Y. Yao, H. Li, Y. Fan, Y. Zhang, C. Zhao, L. Wang, M. Ma, Z. Lei, and X. Zhang, miR-155 regulates the proliferation and invasion of clear cell renal cell carcinoma cells by targeting E2F2, Oncotarget, vol. 7, no. 15, pp. 20324–20337, 2016.
[13]

E. Y. Dessie, J. J. P. Tsai, J. G. Chang, and K. L. Ng, A novel miRNA-based classification model of risks and stages for clear cell renal cell carcinoma patients, BMC Bioinform., vol. 22, no. 10, p. 270, 2021.

[14]

A. Sánchez-Gastaldo, E. Kempf, A. González Del Alba, and I. Duran, Systemic treatment of renal cell cancer: A comprehensive review, Cancer Treat. Rev., vol. 60, pp. 77–89, 2017.

[15]

A. Znaor, J. Lortet-Tieulent, M. Laversanne, A. Jemal, and F. Bray, International variations and trends in renal cell carcinoma incidence and mortality, Eur. Urol., vol. 67, no. 3, pp. 519–530, 2015.

[16]
K. Jiang, L. Z. Xu, J. Z. Ning, and F. Cheng, FAP promotes clear cell renal cell carcinoma progression via activating the PI3K/AKT/mTOR signaling pathway, Cancer Cell Int., vol. 23, no. 1, p. 217, 2023.
[17]
Y. Pan, G. Shu, L. Fu, K. Huang, X. Zhou, C. Gui, H. Liu, X. Jin, M. Chen, P. Li, et al., EHBP1L1 drives immune evasion in renal cell carcinoma through binding and stabilizing JAK1, Adv. Sci. (Weinh ), vol. 10, no. 11, p. e2206792, 2023.
[18]
X. Du and J. Shi, UBA2 promotes the progression of renal cell carcinoma by suppressing the p53 signaling, Ir. J. Med. Sci., vol. 191, no. 4, pp. 1555–1560, 2022.
[19]

J. S. Yuan, Z. S. Chen, K. Wang, and Z. L. Zhang, Holliday junction-recognition protein modulates apoptosis, cell cycle arrest and reactive oxygen species stress in human renal cell carcinoma, Oncol. Rep., vol. 44, no. 3, pp. 1246–1254, 2020.

[20]
F. Zhang, D. Yuan, J. Song, W. Chen, W. Wang, G. Zhu, B. Hu, X. Chen, and J. Zhu, HJURP is a prognostic biomarker for clear cell renal cell carcinoma and is linked to immune infiltration, Int. Immunopharmacol., vol. 99, p. 107899, 2021.
[21]

W. Wei, Y. Lv, Z. Gan, Y. Zhang, X. Han, and Z. Xu, Identification of key genes involved in the metastasis of clear cell renal cell carcinoma, Oncol. Lett., vol. 17, no. 5, pp. 4321–4328, 2019.

[22]
S. Zhang, K. Xia, Y. Chang, Y. Wei, Y. Xiong, F. Tang, and J. Peng, LRP2 and DOCK8 are potential antigens for mRNA vaccine development in immunologically ‘Cold’ KIRC tumours, Vaccines (Basel ), vol. 11, no. 2, p. 396, 2023.
[23]
Y. Wang, Y. Chen, B. Zhu, L. Ma, and Q. Xing, A novel nine apoptosis-related genes signature predicting overall survival for kidney renal clear cell carcinoma and its associations with immune infiltration, Front. Mol. Biosci., vol. 8, p. 567730, 2021.
[24]

S. Liu, Y. Wang, C. Miao, Q. Xing, and Z. Wang, High expression of CDCA7 predicts poor prognosis for clear cell renal cell carcinoma and explores its associations with immunity, Cancer Cell Int., vol. 21, no. 1, p. 140, 2021.

[25]
H. Ito, O. Ichiyanagi, S. Naito, V. N. Bilim, Y. Tomita, T. Kato, A. Nagaoka, and N. Tsuchiya, GSK-3 directly regulates phospho-4EBP1 in renal cell carcinoma cell-line: an intrinsic subcellular mechanism for resistance to mTORC1 inhibition, BMC Cancer, vol. 16, p. 393, 2016.
[26]

W. Han, B. Fan, Y. Huang, X. Wang, Z. Zhang, G. Gu, and Z. Liu, Construction and validation of a prognostic model of RNA binding proteins in clear cell renal carcinoma, BMC Nephrol., vol. 23, no. 1, p. 172, 2022.

[27]

Y. Qian, Y. Li, K. Chen, N. Liu, X. Hong, D. Wu, Z. Xu, L. Zhou, L. Xu, and R. Jia, et al., Pan-cancer transcriptomic analysis identifies PLK1 crucial for the tumorigenesis of clear cell renal cell carcinoma, J. Inflamm. Res., vol. 15, pp. 1099–1116, 2022.

[28]
W. Li, X. Meng, H. Yuan, W. Xiao, and X. Zhang, M2-polarization-related CNTNAP1 gene might be a novel immunotherapeutic target and biomarker for clear cell renal cell carcinoma, IUBMB Life, vol. 74, no. 5, pp. 391–407, 2022.
[29]
S. Liu, Y. Yu, Y. Wang, B. Zhu, and B. Han, COLGALT1 is a potential biomarker for predicting prognosis and immune responses for kidney renal clear cell carcinoma and its mechanisms of ceRNA networks, Eur. J. Med. Res., vol. 27, no. 1, p. 122, 2022.
[30]

G. Sun, Y. Ge, Y. Zhang, L. Yan, X. Wu, W. Ouyang, Z. Wang, B. Ding, Y. Zhang, and G. Long, et al., Transcription factors BARX1 and DLX4 contribute to progression of clear cell renal cell carcinoma via promoting proliferation and epithelial-mesenchymal transition, Front. Mol. Biosci., vol. 8, p. 626328, 2021.

[31]
Y. Pu, J. Han, M. Zhang, M. Liu, G. Abdusamat, and H. Liu, SKA1 promotes tumor metastasis via SAFB-mediated transcription repression of DUSP6 in clear cell renal cell carcinoma, Aging (Albany NY ), vol. 14, no. 23, pp. 9679–9698, 2022.
[32]
B. Yu, X. Zheng, Z. Sun, P. Cao, J. Zhang, and W. Wang, IFI16 can be used as a biomarker for diagnosis of renal cell carcinoma and prediction of patient survival, Front. Genet., vol. 12, p. 599952, 2021.
[33]
X. D. Liu, D. W. Yao, and F. Xin, TTK contributes to tumor growth and metastasis of clear cell renal cell carcinoma by inducing cell proliferation and invasion, Neoplasma, vol. 66, no. 6, pp. 946–953, 2019.
[34]

Y. Wang, S. Liu, Y. Chen, B. Zhu, and Q. Xing, Survival prognosis, tumor immune landscape, and immune responses of PPP1R18 in kidney renal clear cell carcinoma and its potentially double mechanisms, World J. Oncol., vol. 13, no. 1, pp. 27–37, 2022.

[35]
H. Sun, J. Zheng, J. Xiao, J. Yue, Z. Shi, Z. Xuan, C. Chen, Y. Zhao, W. Tang, S. Ye, et al., TOPK/PBK is phosphorylated by ERK2 at serine 32, promotes tumorigenesis and is involved in sorafenib resistance in RCC, Cell Death Dis., vol. 13, no. 5, p. 450, 2022.
[36]

H. Fang, Z. Peng, B. Tan, N. Peng, B. Li, D. He, M. Xu, and Z. Yang, The involvement of PDIA2 gene in the progression of renal cell carcinoma is potentially through regulation of JNK signaling pathway, Clin. Transl. Oncol., vol. 25, no. 10, pp. 2938–2949, 2023.

[37]

Y. Liu, H. Wang, B. Ni, J. Zhang, S. Li, Y. Huang, Y. Cai, H. Mei, and Z. Li, Loss of KCNJ15 expression promotes malignant phenotypes and correlates with poor prognosis in renal carcinoma, Cancer Manag. Res., vol. 11, pp. 1211–1220, 2019.

[38]

S. Chen, M. Yu, L. Ju, G. Wang, K. Qian, Y. Xiao, and X. Wang, The immune-related biomarker TEK inhibits the development of clear cell renal cell carcinoma (ccRCC) by regulating AKT phosphorylation, Cancer Cell Int., vol. 21, no. 1, p. 119, 2021.

[39]

Y. Zhu, L. Xu, J. Zhang, W. Xu, Y. Liu, H. Yin, T. Lv, H. An, L. Liu, and H. He, et al., Klotho suppresses tumor progression via inhibiting PI3K/Akt/GSK3β/Snail signaling in renal cell carcinoma, Cancer Sci., vol. 104, no. 6, pp. 663–671, 2013.

[40]

P. Xi, Z. Zhang, Y. Liu, Y. Nie, B. Gong, J. Liu, H. Huang, Z. Liu, T. Sun, and W. Xie, Multidimensional comprehensive and integrated analysis of the potential function of TMEM25 in renal clear cell carcinoma with low expression status, Aging (Albany NY), vol. 16, no. 1, pp. 367–388, 2024.

[41]
L. Peng, J. Liang, Q. Wang, and G. Chen, A DNA damage repair gene signature associated with immunotherapy response and clinical prognosis in clear cell renal cell carcinoma, Front. Genet., vol. 13, p. 798846, 2022.
[42]

W. Zhong, C. Huang, J. Lin, M. Zhu, H. Zhong, M. H. Chiang, H. S. Chiang, M. S. Hui, Y. Lin, and J. Huang, Development and validation of nine-rna binding protein signature predicting overall survival for kidney renal clear cell carcinoma, Front. Genet., vol. 11, p. 568192, 2020.

[43]
D. Pei, C. Xu, D. Wang, X. Shi, Y. Zhang, Y. Liu, J. Guo, N. Liu, and H. Zhu, A novel prognostic signature associated with the tumor microenvironment in kidney renal clear cell carcinoma, Front. Oncol., vol. 12, p. 912155, 2022.
[44]

Z. Zhang, E. Lin, H. Zhuang, L. Xie, X. Feng, J. Liu, and Y. Yu, Construction of a novel gene-based model for prognosis prediction of clear cell renal cell carcinoma, Cancer Cell Int., vol. 20, p. 27, 2020.

[45]
Y. Yu, W. Yao, T. Wang, W. Xue, Y. Meng, L. Cai, W. Jian, Y. Yu, and C. Zhang, FBXL6 depletion restrains clear cell renal cell carcinoma progression, Transl. Oncol., vol. 26, p. 101550, 2022.
[46]
H. Gou, P. Chen, and W. Wu, FAM72 family proteins as poor prognostic markers in clear cell renal carcinoma, Biochem. Biophys. Rep., vol. 35, p. 101506, 2023.
[47]
B. Wang, D. Chen, and H. Hua, TBC1D3 family is a prognostic biomarker and correlates with immune infiltration in kidney renal clear cell carcinoma, Mol. Ther. Oncolytics, vol. 22, pp. 528–538, 2021.
[48]

Y. Zhan, R. Zhang, C. Li, X. Xu, K. Zhu, Z. Yang, J. Zheng, and Y. Guo, A microRNA-clinical prognosis model to predict the overall survival for kidney renal clear cell carcinoma, Cancer Med., vol. 10, no. 17, pp. 6128–6139, 2021.

[49]

V. Petrozza, A. Carbone, T. Bellissimo, N. Porta, G. Palleschi, A. L. Pastore, A. Di Carlo, C. Della Rocca, and F. Fazi, Oncogenic microRNAs characterization in clear cell renal cell carcinoma, Int. J. Mol. Sci., vol. 16, no. 12, pp. 29219–29225, 2015.

[50]

H. Tusong, N. Maolakuerban, J. Guan, M. Rexiati, W. G. Wang, B. Azhati, Y. Nuerrula, and Y. J. Wang, Functional analysis of serum microRNAs miR-21 and miR-106a in renal cell carcinoma, Cancer Biomark., vol. 18, no. 1, pp. 79–85, 2017.

[51]

Z. F. Jing, J. B. Bi, Z. Li, X. Liu, J. Li, Y. Zhu, X. T. Zhang, Z. Zhang, Z. Li, and C. Z. Kong, Inhibition of miR-34a-5p can rescue disruption of the p53-DAPK axis to suppress progression of clear cell renal cell carcinoma, Mol. Oncol., vol. 13, no. 10, pp. 2079–2097, 2019.

[52]

Y. Liu, H. Nie, Y. Zhang, N. Zhang, M. Han, H. Liu, D. Sun, X. Wu, X. Xiao, and X. Cao, MiR-224-5p targeting OCLN promotes the proliferation, migration, and invasion of clear cell renal cell carcinoma cells, Urol. Int., vol. 106, no. 11, pp. 1185–1194, 2022.

[53]

J. Zhou, P. Li, J. Feng, Q. Wu, and S. You, MiR-24-1-5p hinders malignant phenotypes of clear cell renal cell carcinoma by targeting SHOX2, Biochem. Genet., vol. 61, no. 5, pp. 2004–2019, 2023.

[54]
Q. Liu and C. Lei, LINC01232 serves as a novel biomarker and promotes tumour progression by sponging miR-204-5p and upregulating RAB22A in clear cell renal cell carcinoma, Ann. Med., vol. 53, no. 1, pp. 2153–2164, 2021.
[55]

L. Guan, J. Tan, H. Li, and X. Jin, Biomarker identification in clear cell renal cell carcinoma based on miRNA-seq and digital gene expression-seq data, Gene, vol. 647, pp. 205–212, 2018.

[56]

S. Qin, X. Shi, C. Wang, P. Jin, and F. Ma, Transcription factor and miRNA interplays can manifest the survival of ccRCC patients, Cancers (Basel), vol. 11, no. 11, p. 1668, 2019.

[57]
P. Hong, H. Du, M. Tong, Q. Cao, D. Hu, J. Ma, Y. Jin, Z. Li, W. Huang, and G. Tong, A novel M7G-related microRNAs risk signature predicts the prognosis and tumor microenvironment of kidney renal clear cell carcinoma, Front. Genet., vol. 13, p. 922358, 2022.
[58]

M. Huang, T. Zhang, Z. Y. Yao, C. Xing, Q. Wu, Y. W. Liu, and X. L. Xing, MicroRNA related prognosis biomarkers from high throughput sequencing data of kidney renal clear cell carcinoma, BMC Med. Genomics, vol. 14, no. 1, p. 72, 2021.

[59]

M. Han, H. Yan, K. Yang, B. Fan, P. Liu, and H. Yang, Identification of biomarkers and construction of a microRNA-mRNA regulatory network for clear cell renal cell carcinoma using integrated bioinformatics analysis, PLoS One, vol. 16, no. 1, p. e0244394, 2021.

[60]

X. Zuo, C. Lu, Y. Zheng, D. Lai, D. Liu, G. Wan, C. Lu, and X. Gu, Effects of the targeted regulation of CCRK by miR-335-5p on the proliferation and tumorigenicity of human renal carcinoma cells, J. Oncol., vol. 2022, p. 2960050, 2022.

[61]

Q. Xing, J. Luan, S. Liu, L. Ma, and Y. Wang, Six RNA binding proteins (RBPs) related prognostic model predicts overall survival for clear cell renal cell carcinoma and is associated with immune infiltration, Bosn. J. Basic Med. Sci., vol. 22, no. 3, pp. 435–452, 2022.

Big Data Mining and Analytics
Pages 1396-1416
Cite this article:
Yu J, Cai J, Fahira A, et al. A Comprehensive Investigation to Identify Prognostic mRNA and miRNA Signatures for Renal Cell Carcinoma Utilizing a Stratification-Based Approach. Big Data Mining and Analytics, 2024, 7(4): 1396-1416. https://doi.org/10.26599/BDMA.2024.9020039
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return