[1]
F. M. Suchanek, G. Kasneci, and G. Weikum, Yago: A core of semantic knowledge, in Proc. 16th Int. World Wide Web Conf., Banff, Canada, 2007, pp. 697–706.
[2]
K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, Freebase: A collaboratively created graph database for structuring human knowledge, in Proc. 2008 ACM SIGMOD Int. Conf. on Management of Data, Vancouver, Canada, 2008, pp. 1247–1250.
[3]
T. P. Tanon, D. Vrandečić, S. Schaffert, T. Steiner, and L. Pintscher, From freebase to wikidata: The great migration, in Proc. 25th Int. World Wide Web Conf., Montréal, Canada, 2016, pp. 1419–1428.
[4]
S. Heindorf, M. Potthast, B. Stein, and G. Engels, Vandalism detection in wikidata, in Proc. 25th ACM Conf. on Information and Knowledge Management, Indianapolis, IN, USA, 2016, pp. 327–336.
[5]
A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, Translating embeddings for modeling multi-relational data, in Proc. 26th Int. Conf. on Neural Information Processing Systems, Lake Tahoe, NV, USA, 2013, pp. 2787–2795.
[6]
Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, Learning entity and relation embeddings for knowledge graph completion, in Proc. 29th AAAI Conf. on Artificial Intelligence, Austin, TX, USA, 2015, pp. 2181–2187.
[7]
T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard, Complex embeddings for simple link prediction, in Proc. 33rd Int. Conf. on Machine Learning, New York, NY, USA, 2016, pp. 2071–2080.
[8]
B. Yang, W. Yih, X. He, J. Gao, and L. Deng, Embedding entities and relations for learning and inference in knowledge bases, arXiv preprint arXiv: 1412.6575, 2014.
[10]
H. Xiao, M. Huang, L. Meng, and X. Zhu, SSP: Semantic space projection for knowledge graph embedding with text descriptions, in Proc. 31st AAAI Conf. on Artificial Intelligence, San Francisco, CA, USA, 2017, pp. 3104–3110.
[11]
R. Xie, Z. Liu, J. Jia, H. Luan, and M. Sun, Representation learning of knowledge graphs with entity descriptions, in Proc. 30th AAAI Conf. on Artificial Intelligence, Phoenix, AZ, USA, 2016, pp. 2659–2665.
[12]
J. Xu, K. Chen, X. Qiu, and X. Huang, Knowledge graph representation with jointly structural and textual encoding, arXiv preprint arXiv: 1611.08661, 2016.
[13]
K. Bougiatiotis, R. Fasoulis, F. Aisopos, A. Nentidis, and G. Paliouras, Guiding graph embeddings using path-ranking methods for error detection innoisy knowledge graphs, arXiv preprint arXiv: 2002.08762, 2020.
[14]
Q. Zhang, J. Dong, K. Duan, X. Huang, Y. Liu, and L. Xu, Contrastive knowledge graph error detection, in Proc. 31st ACM Int. Conf. on Information and Knowledge Management, Atlanta, GA, USA, 2022, pp. 2590–2599.
[15]
R. Xie, Z. Liu, F. Lin, and L. Lin, Does william shakespeare really write hamlet? Knowledge representation learning with confidence, in Proc. 32nd AAAI Conf. on Artificial Intelligence, New Orleans, LA, USA, 2018, pp. 4954–4961.
[16]
S. Jia, Y. Xiang, X. Chen, and K. Wang, Triple trustworthiness measurement for knowledge graph, in Proc. 28th Int. World Wide Web Conf., San Francisco, CA, USA, 2019, pp. 2865–2871.
[17]
Z. Sun, Z. Deng, J. Nie, and J. Tang, Rotate: Knowledge graph embedding by relational rotation in complex space, arXiv preprint arXiv: 1902.10197, 2019.
[19]
G. Beskales, I. F. Ilyas, L. Golab, and A. Galiullin, On the relative trust between inconsistent data and inaccurate constraints, in Proc. IEEE 29th Int. Conf. on Data Engineering, Brisbane, Australia, 2013, pp. 541–552.
[20]
X. Chu, I. F. Ilyas, and P. Papotti, Holistic data cleaning: Putting violations into context, in Proc. IEEE 29th Int. Conf. on Data Engineering, Brisbane, Australia, 2013, pp. 458–469.
[21]
Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden, M. Ouzzani, P. Papotti, J. A. Quiané-Ruiz, N. Tang, and S. Yin, Bigdansing: A system for big data cleansing, in Proc. 2015 ACM SIGMOD Int. Conf. on Management of Data, Melbourne, Australia, 2015, pp. 1215–1230.
[22]
A. Melo and H. Paulheim, Detection of relation assertion errors in knowledge graphs, in Proc. 9th Knowledge Capture Conf., Austin, TX, USA, 2017, pp. 1–8.
[23]
K. Cheng, X. Li, Y. E. Xu, X. L. Dong, and Y. Sun, PGE: Robust product graph embedding learning for error detection, arXiv preprint arXiv: 2202.09747, 2022.
[25]
N. Kalchbrenner, E. Grefenstette, and P. Blunsom, A convolutional neural network for modelling sentences, in Proc. 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, MD, USA, 2014, pp. 655–665.
[26]
D. Q. Nguyen, T. D. Nguyen, D. Q. Nguyen, and D. Phung, A novel embedding model for knowledge base completion based on convolutional neural network, in Proc. 2018 Conference of the North American Chapter of the Association for Computational Linguistics : Human Language Technologies, Volume 2 (Short Papers), New Orleans, LA, USA, 2018, pp. 327–333.
[27]
C. Belth, X. Zheng, J. Vreeken, and D. Koutra, What is normal, what is strange, and what is missing in a knowledge graph: Unified characterization via inductive summarization, in Proc. Web Conf. 2020, Taipei, China, 2020, pp. 1115–1126.