Mass spectrometry plays a crucial role in biomedicine by detecting isotopes, contributing significantly to research, diagnostics, and therapy development. This study introduces IsoFusion, a deep learning model designed to address isotope detection in raw mass spectra. Rather than directly applying convolutional layers to all signal and noise peaks, IsoFusion employs a trial-and-error strategy. First, it investigates all potential charge states (trials) and collects signal peaks around expected m/z values for each trial. Then, convolutional layers extract features from each trial, which are fused to identify the correct one. Finally, the reparameterization trick predicts isotope features based on this correct trial. A key advantage of IsoFusion is shared model parameters across all trials, enhancing feature learning for less common charge states using data from prevalent ones. Our results show a significant accuracy improvement for charge state 5, reaching 99.42%, compared to DeepIso’s 43.36%. Moreover, IsoFusion achieves a 97.33% detection accuracy for isotopes, with 2.4% of detected isotopes previously unidentified by four commonly used methods.
V. Kumar, J. D. Lee, R. J. Clark, and T. M. Woodruff, Development and validation of a LC-MS/MS assay for pharmacokinetic studies of complement C5a receptor antagonists PMX53 and PMX205 in mice, Sci. Rep., vol. 8, no. 1, p. 8101, 2018.
L. Chang, J. Ni, J. Beretov, V. C. Wasinger, J. Hao, J. Bucci, D. Malouf, D. Gillatt, P. H. Graham, and Y. Li, Identification of protein biomarkers and signaling pathways associated with prostate cancer radioresistance using label-free LC-MS/MS proteomic approach, Sci. Rep., vol. 7, no. 1, p. 41834, 2017.
D. Chen, X. Su, N. Wang, Y. Li, H. Yin, L. Li, and L. Li, Chemical isotope labeling LC-MS for monitoring disease progression and treatment in animal models: Plasma metabolomics study of osteoarthritis rat model, Sci. Rep., vol. 7, no. 1, p. 40543, 2017.
F. Becher, J. Ciccolini, D.-C. Imbs, C. Marin, C. Fournel, C. Dupuis, N. Fakhry, B. Pourroy, A. Ghettas, A. Pruvost, et al., A simple and rapid LC-MS/MS method for therapeutic drug monitoring of cetuximab: A GPCO-UNICANCER proof of concept study in head-and-neck cancer patients, Sci. Rep., vol. 7, no. 1, p. 2714, 2017.
Y. Tang, F. Tang, Y. Yang, L. Zhao, H. Zhou, J. Dong, and W. Huang, Real-time analysis on drug-antibody ratio of antibody-drug conjugates for synthesis, process optimization, and quality control, Sci. Rep., vol. 7, no. 1, p. 7763, 2017.
J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat. Biotechnol., vol. 26, p. 1367–1372, 2008.
P. M. Palagi, D. Walther, M. Quadroni, S. Catherinet, J. Burgess, C. G. Zimmermann-Ivol, J.-C. Sanchez, P.-A. Binz, D. F. Hochstrasser, and R. D. Appel, MSight: An image analysis software for liquid chromatography-mass spectrometry, Proteomics, vol. 5, no. 9, pp. 2381–2384, 2005.
R. Tautenhahn, C. Böttcher, and S. Neumann, Highly sensitive feature detection for high resolution LC/MS, BMC Bioinform., vol. 9, no. 1, p. 504, 2008.
M. Sturm, A. Bertsch, C. Gröpl, A. Hildebrandt, R. Hussong, E. Lange, N. Pfeifer, O. Schulz-Trieglaff, A. Zerck, K. Reinert, et al., OpenMS–An Open-source software framework for mass spectrometry, BMC Bioinform., vol. 9, no. 1, p. 163, 2008.
C. J. Conley, R. Smith, R. J. O. Torgrip, R. M. Taylor, R. Tautenhahn, and J. T. Prince, Massifquant: Open-source Kalman filter-based XC-MS isotope trace feature detection, Bioinformatics, vol. 30, no. 18, pp. 2636–2643, 2014.
K. Aoshima, K. Takahashi, M. Ikawa, T. Kimura, M. Fukuda, S. Tanaka, H. E. Parry, Y. Fujita, A. C. Yoshizawa, S.-I. Utsunomiya, et al., A simple peak detection and label-free quantitation algorithm for chromatography-mass spectrometry, BMC Bioinform., vol. 15, no. 1, p. 376, 2014.
J. Teleman, A. Chawade, M. Sandin, F. Levander, and J. Malmström, Dinosaur: A refined open-source peptide MS feature detector, J. Proteome Res., vol. 15, no. 7, pp. 2143–2151, 2016.
H. Weisser and J. S. Choudhary, Targeted feature detection for data-dependent shotgun proteomics, J. Proteome Res., vol. 16, no. 8, pp. 2964–2974, 2017.
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
F. T. Zohora, M. Z. Rahman, N. H. Tran, L. Xin, B. Shan, and M. Li, DeepIso: A deep learning model for peptide feature detection from LC-MS map, Sci. Rep., vol. 9, no. 1, p. 17168, 2019.
F. T. Zohora, M. Z. Rahman, N. H. Tran, L. Xin, B. Shan, and M. Li, Deep neural network for detecting arbitrary precision peptide features through attention based segmentation, Sci. Rep., vol. 11, no. 1, p. 18249, 2021.
A. R. Basharat, Y. Zang, L. Sun, and X. Liu, TopFD: A proteoform feature detection tool for top-down proteomics, Anal. Chem., vol. 95, no. 21, pp. 8189–8196, 2023.
H. Steen and M. Mann, The abc’s (and xyz’s) of peptide sequencing, Nat. Rev. Mol. Cell Biol., vol. 5, pp. 699–711, 2004.
M. C. Chambers, B. MacLean, R. Burke, D. Amodei, D. L. Ruderman, S. Neumann, L. Gatto, B. Fischer, B. Pratt, J. Egertson, et al., A cross-platform toolkit for mass spectrometry and proteomics, Nat. Biotechnol., vol. 30, no. 10, pp. 918–920, 2012.
A. Chawade, M. Sandin, J. Teleman, J. Malmström, and F. Levander, Data processing has major impact on the outcome of quantitative label-free LC-MS analysis, J. Proteome Res., vol. 14, no. 2, pp. 676–687, 2015.
D. N. Perkins, D. J. C. Pappin, D. M. Creasy, and J. S. Cottrell, Probability-based protein identification by searching sequence databases using mass spectrometry data, 3.0.CO;2-2">Electrophoresis, vol. 20, no. 18, pp. 3551–3567, 1999.