Complex systems can be more accurately described by higher-order interactions among multiple units. Hypergraphs excel at depicting these interactions, surpassing the binary limitations of traditional graphs. However, retrieving valuable information from hypergraphs is often challenging due to their intricate interconnections. To address this issue, we introduce a new category of structural patterns, hypermotifs, which are defined as statistically significant local structures formed by interconnected hyperedges. We propose a systematic framework for hypermotif extraction. This framework features the encoding, census, and evaluation of higher-order patterns, effectively overcoming their inherent complexity and diversity. Our experimental results demonstrate that hypermotifs can serve as higher-order fingerprints of real-world hypergraphs, helping to identify hypergraph classes based on network functions. These motifs potentially represent preferential attachments and key modules in real-world hypergraphs, arising from specific mechanisms or constraints. Our work validates the efficacy of hypermotifs in exploring hypergraphs, offering a powerful tool for revealing the design principles and underlying dynamics of interacting systems.
L. Hagen and A. B. Kahng, New spectral methods for ratio cut partitioning and clustering, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 11, no. 9, pp. 1074–1085, 1992.
J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905, 2000.
D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature, vol. 393, pp. 440–442, 1998.
S. Milgram, The small world problem, Psychology today, vol. 2, no. 1, pp. 60–67, 1967.
R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, Network motifs: Simple building blocks of complex networks, Science, vol. 298, no. 5594, pp. 824–827, 2002.
S. Fortunato, Community detection in graphs, Phys. Rep., vol. 486, nos. 3–5, pp. 75–174, 2010.
A. Galeotti, S. Goyal, M. O. Jackson, F. Vega-Redondo, and L. Yariv, Network games, Rev. Econ. Stud., vol. 77, no. 1, pp. 218–244, 2009.
S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, Complex networks: Structure and dynamics, Phys. Rep., vol. 424, nos. 4&5, pp. 175–308, 2006.
A. R. Benson, D. F. Gleich, and J. Leskovec, Higher-order organization of complex networks, Science, vol. 353, no. 6295, pp. 163–166, 2016.
J. Grilli, G. Barabás, M. J. Michalska-Smith, and S. Allesina, Higher-order interactions stabilize dynamics in competitive network models, Nature, vol. 548, no. 7666, pp. 210–213, 2017.
A. E. Sizemore, C. Giusti, A. Kahn, J. M. Vettel, R. F. Betzel, and D. S. Bassett, Cliques and cavities in the human connectome, J. Comput. Neurosci., vol. 44, no. 1, pp. 115–145, 2018.
F. Battiston, E. Amico, A. Barrat, G. Bianconi, G. Ferraz de Arruda, B. Franceschiello, I. Iacopini, S. Kéfi, V. Latora, Y. Moreno, et al., The physics of higher-order interactions in complex systems, Nat. Phys., vol. 17, no. 10, pp. 1093–1098, 2021.
K. A. Murgas, E. Saucan, and R. Sandhu, Hypergraph geometry reflects higher-order dynamics in protein interaction networks, Sci. Rep., vol. 12, no. 1, p. 20879, 2022.
F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas, A. Patania, J.-G. Young, and G. Petri, Networks beyond pairwise interactions: Structure and dynamics, Phys. Rep., vol. 874, pp. 1–92, 2020.
S. G. Aksoy, C. Joslyn, C. Ortiz Marrero, B. Praggastis, and E. Purvine, Hypernetwork science via high-order hypergraph walks, EPJ Data Sci., vol. 9, no. 1, p. 16, 2020.
A. Antelmi, G. Cordasco, M. Polato, V. Scarano, C. Spagnuolo, and D. Yang, A survey on hypergraph representation learning, ACM Comput. Surv., vol. 56, no. 1, pp. 1–38, 2024.
A. P. Millán, J. J. Torres, and G. Bianconi, Explosive higher-order kuramoto dynamics on simplicial complexes, Phys. Rev. Lett., vol. 124, no. 21, p. 218301, 2020.
L. Neuhäuser, A. Mellor, and R. Lambiotte, Multibody interactions and nonlinear consensus dynamics on networked systems, Phys. Rev. E, vol. 101, no. 3, p. 032310, 2020.
U. Alvarez-Rodriguez, F. Battiston, G. F. de Arruda, Y. Moreno, M. Perc, and V. Latora, Evolutionary dynamics of higher-order interactions in social networks, Nat. Hum. Behav., vol. 5, no. 5, pp. 586–595, 2021.
N. Yuvaraj, K. Srihari, S. Chandragandhi, R. A. Raja, G. Dhiman, and A. Kaur, Analysis of protein-ligand interactions of SARS-Cov-2 against selective drug using deep neural networks, Big Data Mining and Analytics, vol. 4, no. 2, pp. 76–83, 2021.
A. R. Benson, R. Abebe, M. T. Schaub, A. Jadbabaie, and J. Kleinberg, Simplicial closure and higher-order link prediction, Proc. Natl. Acad. Sci. U. S. A., vol. 115, no. 48, pp. E11221–E11230, 2018.
T. Carletti, F. Battiston, G. Cencetti, and D. Fanelli, Random walks on hypergraphs, Phys. Rev. E, vol. 101, no. 2, p. 022308, 2020.
S. Bai, F. Zhang, and P. H. S. Torr, Hypergraph convolution and hypergraph attention, Pattern Recognit., vol. 110, p. 107637, 2021.
R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Sheffer, and U. Alon, Superfamilies of evolved and designed networks, Science, vol. 303, no. 5663, pp. 1538–1542, 2004.
S. Maslov and K. Sneppen, Specificity and stability in topology of protein networks, Science, vol. 296, no. 5569, pp. 910–913, 2002.
F. Saracco, R. Di Clemente, A. Gabrielli, and T. Squartini, Detecting early signs of the 2007–2008 crisis in the world trade, Sci. Rep., vol. 6, no. 1, p. 30286, 2016.
L. Chen, X. Qu, M. Cao, Y. Zhou, W. Li, B. Liang, W. Li, W. He, C. Feng, X. Jia, et al., Identification of breast cancer patients based on human signaling network motifs, Sci. Rep., vol. 3, no. 1, p. 3368, 2013.
S. R. McGee, C. Tibiche, M. Trifiro, and E. Wang, Network analysis reveals a signaling regulatory loop in the PIK3CA-mutated breast cancer predicting survival outcome, Genom. Proteom. Bioinform., vol. 15, no. 2, pp. 121–129, 2017.
N. Pržulj, D. G. Corneil, and I. Jurisica, Modeling interactome: Scale-free or geometric, Bioinformatics, vol. 20, no. 18, pp. 3508–3515, 2004.
I. Albert and R. Albert, Conserved network motifs allow protein-protein interaction prediction, Bioinformatics, vol. 20, no. 18, pp. 3346–3352, 2004.
S. Mangan and U. Alon, Structure and function of the feed-forward loop network motif, Proc. Natl. Acad. Sci. U. S. A., vol. 100, no. 21, pp. 11980–11985, 2003.
D. Zhu and Z. S. Qin, Structural comparison of metabolic networks in selected single cell organisms, BMC Bioinform., vol. 6, no. 1, p. 8, 2005.
U. Alon, Network motifs: Theory and experimental approaches, Nat. Rev. Genet., vol. 8, no. 6, pp. 450–461, 2007.
N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon, Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs, Bioinformatics, vol. 20, no. 11, pp. 1746–1758, 2004.
S. Wernicke, Efficient detection of network motifs, IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 3, no. 4, pp. 347–359, 2006.
Z. R. M. Kashani, H. Ahrabian, E. Elahi, A. Nowzari-Dalini, E. S. Ansari, S. Asadi, S. Mohammadi, F. Schreiber, and A. Masoudi-Nejad, Kavosh: A new algorithm for finding network motifs, BMC Bioinform., vol. 10, no. 1, p. 318, 2009.
N. Shervashidze, S. V. N. Vishwanathan, T. H. Petri, K. Mehlhorn, and K. M. Borgwardt, Efficient graphlet kernels for large graph comparison, J. Mach. Learn. Res., vol. 5, pp. 488–495, 2009.
B. MCKAY, Practical graph isomorphism, Congressus Numeranitum, vol. 30, pp. 45–87, 1981
Y. Xue and P. Bogdan, Reconstructing missing complex networks against adversarial interventions, Nat. Commun., vol. 10, no. 1, p. 1738, 2019.
X. Xiao, H. Chen, and P. Bogdan, Deciphering the generating rules and functionalities of complex networks, Sci. Rep., vol. 11, no. 1, p. 22964, 2021.
R. Yang and P. Bogdan, Controlling the multifractal generating measures of complex networks, Sci. Rep., vol. 10, no. 1, p. 5541, 2020.
R. Yang, F. Sala, and P. Bogdan, Hidden network generating rules from partially observed complex networks, Commun. Phys., vol. 4, no. 1, p. 199, 2021.
G. Lee, J. Ko, and K. Shin, Hypergraph motifs, Proc. VLDB Endow., vol. 13, no. 12, pp. 2256–2269, 2020.
Q. F. Lotito, F. Musciotto, A. Montresor, and F. Battiston, Higher-order motif analysis in hypergraphs, Commun. Phys., vol. 5, no. 1, p. 79, 2022.
Q. F. Lotito, F. Musciotto, F. Battiston, and A. Montresor, Exact and sampling methods for mining higher-order motifs in large hypergraphs, Computing, vol. 106, no. 2, pp. 475–494, 2024.
T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.
G. Li, L. Qi, and G. Yu, The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory, Numer. Linear Algebra Appl., vol. 20, no. 6, pp. 1001–1029, 2013.
K. J. Pearson and T. Zhang, On spectral hypergraph theory of the adjacency tensor, Graphs Comb., vol. 30, no. 5, pp. 1233–1248, 2014.
A. M. Feist, D. C. Zielinski, J. D. Orth, J. Schellenberger, M. J. Herrgard, and B. Ø. Palsson, Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli, Metab. Eng., vol. 12, no. 3, pp. 173–186, 2010.
R. Mastrandrea, J. Fournet, and A. Barrat, Contact patterns in a high school: A comparison between data collected using wearable sensors, contact diaries and friendship surveys, PLoS One, vol. 10, no. 9, p. e0136497, 2015.
J. D. Orth, T. M. Conrad, J. Na, J. A. Lerman, H. Nam, A. M. Feist, and B. Ø. Palsson, A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011, Mol. Syst. Biol., vol. 7, no. 1, p. 535, 2011.
P. S. Chodrow, Configuration models of random hypergraphs, J. Complex Netw., vol. 8, no. 3, p. cnaa018, 2020.
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Machine learning in python, the Journal of machine Learning research, vol. 12, pp. 2825–2830, 2011.
X.-J. Xu, C. Deng, and L.-J. Zhang, Hyperlink prediction via local random walks and Jensen–Shannon divergence, J. Stat. Mech., vol. 2023, no. 3, p. 033402, 2023.