Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Catalytic conversion of CO2 to value-added chemicals represents a pathway for mitigating CO2 emissions. Many recent studies have demonstrated promising results of CO2 conversion by either thermocatalysis or electrocatalysis. In this article, we discuss tandem electrocatalytic-thermocatalytic processes that potentially have advantages over either process alone. We use the conversion of CO2 to propanal/propanol as a case study to illustrate the feasibility of the tandem process. We also discuss opportunities and challenges for converting CO2 using tandem electrocatalytic-thermocatalytic approaches.
De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes. Science 2019, 364, eaav3506.
Tang, C.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew. Chem., Int. Ed. 2021, 60, 19572–19590.
Biddinger, E. J.; Modestino, M. A. Electro-organic syntheses for green chemical manufacturing. Electrochem. Soc. Interface 2020, 29, 43–48.
Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.
Jeng, E.; Jiao, F. Investigation of CO2 single-pass conversion in a flow electrolyzer. React. Chem. Eng. 2020, 5, 1768–1775.
Overa, S.; Feric, T. G.; Park, A. H. A.; Jiao, F. Tandem and hybrid processes for carbon dioxide utilization. Joule 2021, 5, 8–13.
Biswas, A. N.; Xie, Z. H.; Xia, R.; Overa, S.; Jiao, F.; Chen, J. G. Tandem electrocatalytic-thermocatalytic reaction scheme for CO2 conversion to C3 oxygenates. ACS Energy Lett. 2022, 7, 2904–2910.
Franke, R.; Selent, D.; Börner, A. Applied hydroformylation. Chem. Rev. 2012, 112, 5675–5732.
Liu, B. Y.; Wang, Y.; Huang, N.; Lan, X. C.; Xie, Z. H.; Chen, J. G.; Wang, T. F. Heterogeneous hydroformylation of alkenes by Rh-based catalysts. Chem 2022, 8, 2630–2658.
Xie, Z. H.; Xu, Y. G.; Xie, M.; Chen, X. B.; Lee, J. H.; Stavitski, E.; Kattel, S.; Chen, J. G. Reactions of CO2 and ethane enable CO bond insertion for production of C3 oxygenates. Nat. Commun. 2020, 11, 1887.
Mao, Z. T.; Xie, Z. H.; Chen, J. G. Comparison of heterogeneous hydroformylation of ethylene and propylene over RhCo3/MCM-41 catalysts. ACS Catal. 2021, 11, 14575–14585.
Ro, I.; Qi, J.; Lee, S.; Xu, M. J.; Yan, X. X.; Xie, Z. H.; Zakem, G.; Morales, A.; Chen, J. G.; Pan, X. Q. et al. Bifunctional hydroformylation on heterogeneous Rh-WOx pair site catalysts. Nature 2022, 609, 287–292.
Sheng, W. C.; Kattel, S.; Yao, S. Y.; Yan, B. H.; Liang, Z. X.; Hawxhurst, C. J.; Wu, Q. Y.; Chen, J. G. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios. Energy Environ. Sci. 2017, 10, 1180–1185.
Küngas, R. Review—electrochemical CO2 reduction for CO production: Comparison of low- and high-temperature electrolysis technologies. J. Electrochem. Soc. 2020, 167, 044508.
Bi, L.; Boulfrad, S.; Traversa, E. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides. Chem. Soc. Rev. 2014, 43, 8255–8270.
Wang, Y.; Liu, T.; Lei, L. B.; Chen, F. L. High temperature solid oxide H2O/CO2 co-electrolysis for syngas production. Fuel Process. Technol. 2017, 161, 248–258.
de Klerk, A. Fischer–Tropsch refining: Technology selection to match molecules. Green Chem. 2008, 10, 1249–1279.
Dancuart, L. P.; de Haan, R.; de Klerk, A. Processing of primary Fischer–Tropsch products. Stud. Surf. Sci. Catal. 2004, 152, 482–532.
Gomez, E.; Nie, X. W.; Lee, J. H.; Xie, Z. H.; Chen, J. G. Tandem reactions of CO2 reduction and ethane aromatization. J. Am. Chem. Soc. 2019, 141, 17771–17782.
Xie, Z. H.; Winter, L. R.; Chen, J. G. Bimetallic-derived catalysts and their application in simultaneous upgrading of CO2 and ethane. Matter 2021, 4, 408–440.
Coqueblin, H.; Richard, A.; Uzio, D.; Pinard, L.; Pouilloux, Y.; Epron, F. Effect of the metal promoter on the performances of H-ZSM5 in ethylene aromatization. Catal. Today 2017, 289, 62–69.
Choudhary, V. R.; Devadas, P.; Banerjee, S.; Kinage, A. K. Aromatization of dilute ethylene over Ga-modified ZSM-5 type zeolite catalysts. Microporous Mesoporous Mater. 2001, 47, 253–267.
Choudhary, V. R.; Banerjee, S.; Panjala, D. Product distribution in the aromatization of dilute ethene over H-GaAlMFI zeolite: Effect of space velocity. Microporous Mesoporous Mater. 2002, 51, 203–210.
Uslamin, E. A.; Luna-Murillo, B.; Kosinov, N.; Bruijnincx, P. C. A.; Pidko, E. A.; Weckhuysen, B. M.; Hensen, E. J. M. Gallium-promoted HZSM-5 zeolites as efficient catalysts for the aromatization of biomass-derived furans. Chem. Eng. Sci. 2019, 198, 305–316.
Liang, T. Y.; Toghiani, H.; Xiang, Y. Z. Transient kinetic study of ethane and ethylene aromatization over zinc-exchanged HZSM-5 catalyst. Ind. Eng. Chem. Res. 2018, 57, 15301–15309.
Bonnin, A.; Comparot, J. D.; Pouilloux, Y.; Coupard, V.; Uzio, D.; Pinard, L. Mechanisms of aromatization of dilute ethylene on HZSM-5 and on Zn/HZSM-5 catalysts. Appl. Catal. A: Gen. 2021, 611, 117974.
Chen, X. C.; Dong, M.; Niu, X. J.; Wang, K.; Chen, G.; Fan, W. B.; Wang, J. G.; Qin, Z. F. Influence of Zn species in HZSM-5 on ethylene aromatization. Chin. J. Catal. 2015, 36, 880–888.
Mehdad, A.; Lobo, R. F. Ethane and ethylene aromatization on zinc-containing zeolites. Catal. Sci. Technol. 2017, 7, 3562–3572.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See https://creativecommons.org/licenses/by/4.0/.