Catalytic conversion of CO2 to value-added chemicals represents a pathway for mitigating CO2 emissions. Many recent studies have demonstrated promising results of CO2 conversion by either thermocatalysis or electrocatalysis. In this article, we discuss tandem electrocatalytic-thermocatalytic processes that potentially have advantages over either process alone. We use the conversion of CO2 to propanal/propanol as a case study to illustrate the feasibility of the tandem process. We also discuss opportunities and challenges for converting CO2 using tandem electrocatalytic-thermocatalytic approaches.
De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes. Science 2019, 364, eaav3506.
Tang, C.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew. Chem., Int. Ed. 2021, 60, 19572–19590.
Biddinger, E. J.; Modestino, M. A. Electro-organic syntheses for green chemical manufacturing. Electrochem. Soc. Interface 2020, 29, 43–48.
Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.
Jeng, E.; Jiao, F. Investigation of CO2 single-pass conversion in a flow electrolyzer. React. Chem. Eng. 2020, 5, 1768–1775.
Overa, S.; Feric, T. G.; Park, A. H. A.; Jiao, F. Tandem and hybrid processes for carbon dioxide utilization. Joule 2021, 5, 8–13.
Biswas, A. N.; Xie, Z. H.; Xia, R.; Overa, S.; Jiao, F.; Chen, J. G. Tandem electrocatalytic-thermocatalytic reaction scheme for CO2 conversion to C3 oxygenates. ACS Energy Lett. 2022, 7, 2904–2910.
Franke, R.; Selent, D.; Börner, A. Applied hydroformylation. Chem. Rev. 2012, 112, 5675–5732.
Liu, B. Y.; Wang, Y.; Huang, N.; Lan, X. C.; Xie, Z. H.; Chen, J. G.; Wang, T. F. Heterogeneous hydroformylation of alkenes by Rh-based catalysts. Chem 2022, 8, 2630–2658.
Xie, Z. H.; Xu, Y. G.; Xie, M.; Chen, X. B.; Lee, J. H.; Stavitski, E.; Kattel, S.; Chen, J. G. Reactions of CO2 and ethane enable CO bond insertion for production of C3 oxygenates. Nat. Commun. 2020, 11, 1887.
Mao, Z. T.; Xie, Z. H.; Chen, J. G. Comparison of heterogeneous hydroformylation of ethylene and propylene over RhCo3/MCM-41 catalysts. ACS Catal. 2021, 11, 14575–14585.
Ro, I.; Qi, J.; Lee, S.; Xu, M. J.; Yan, X. X.; Xie, Z. H.; Zakem, G.; Morales, A.; Chen, J. G.; Pan, X. Q. et al. Bifunctional hydroformylation on heterogeneous Rh-WOx pair site catalysts. Nature 2022, 609, 287–292.
Sheng, W. C.; Kattel, S.; Yao, S. Y.; Yan, B. H.; Liang, Z. X.; Hawxhurst, C. J.; Wu, Q. Y.; Chen, J. G. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios. Energy Environ. Sci. 2017, 10, 1180–1185.
Küngas, R. Review—electrochemical CO2 reduction for CO production: Comparison of low- and high-temperature electrolysis technologies. J. Electrochem. Soc. 2020, 167, 044508.
Bi, L.; Boulfrad, S.; Traversa, E. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides. Chem. Soc. Rev. 2014, 43, 8255–8270.
Wang, Y.; Liu, T.; Lei, L. B.; Chen, F. L. High temperature solid oxide H2O/CO2 co-electrolysis for syngas production. Fuel Process. Technol. 2017, 161, 248–258.
de Klerk, A. Fischer–Tropsch refining: Technology selection to match molecules. Green Chem. 2008, 10, 1249–1279.
Dancuart, L. P.; de Haan, R.; de Klerk, A. Processing of primary Fischer–Tropsch products. Stud. Surf. Sci. Catal. 2004, 152, 482–532.
Gomez, E.; Nie, X. W.; Lee, J. H.; Xie, Z. H.; Chen, J. G. Tandem reactions of CO2 reduction and ethane aromatization. J. Am. Chem. Soc. 2019, 141, 17771–17782.
Xie, Z. H.; Winter, L. R.; Chen, J. G. Bimetallic-derived catalysts and their application in simultaneous upgrading of CO2 and ethane. Matter 2021, 4, 408–440.
Coqueblin, H.; Richard, A.; Uzio, D.; Pinard, L.; Pouilloux, Y.; Epron, F. Effect of the metal promoter on the performances of H-ZSM5 in ethylene aromatization. Catal. Today 2017, 289, 62–69.
Choudhary, V. R.; Devadas, P.; Banerjee, S.; Kinage, A. K. Aromatization of dilute ethylene over Ga-modified ZSM-5 type zeolite catalysts. Microporous Mesoporous Mater. 2001, 47, 253–267.
Choudhary, V. R.; Banerjee, S.; Panjala, D. Product distribution in the aromatization of dilute ethene over H-GaAlMFI zeolite: Effect of space velocity. Microporous Mesoporous Mater. 2002, 51, 203–210.
Uslamin, E. A.; Luna-Murillo, B.; Kosinov, N.; Bruijnincx, P. C. A.; Pidko, E. A.; Weckhuysen, B. M.; Hensen, E. J. M. Gallium-promoted HZSM-5 zeolites as efficient catalysts for the aromatization of biomass-derived furans. Chem. Eng. Sci. 2019, 198, 305–316.
Liang, T. Y.; Toghiani, H.; Xiang, Y. Z. Transient kinetic study of ethane and ethylene aromatization over zinc-exchanged HZSM-5 catalyst. Ind. Eng. Chem. Res. 2018, 57, 15301–15309.
Bonnin, A.; Comparot, J. D.; Pouilloux, Y.; Coupard, V.; Uzio, D.; Pinard, L. Mechanisms of aromatization of dilute ethylene on HZSM-5 and on Zn/HZSM-5 catalysts. Appl. Catal. A: Gen. 2021, 611, 117974.
Chen, X. C.; Dong, M.; Niu, X. J.; Wang, K.; Chen, G.; Fan, W. B.; Wang, J. G.; Qin, Z. F. Influence of Zn species in HZSM-5 on ethylene aromatization. Chin. J. Catal. 2015, 36, 880–888.
Mehdad, A.; Lobo, R. F. Ethane and ethylene aromatization on zinc-containing zeolites. Catal. Sci. Technol. 2017, 7, 3562–3572.