Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The influence of nitrogen dopants on the catalytic activity of carbon-based materials has been studied extensively, but the exact role of nitrogen species in these materials remains unclear. A challenge in understanding the role of nitrogen is that most nitrogen-doped nanocarbon (NC) materials are dominated by uncontrollable surface functional groups, and changes in nitrogen species often lead to variations in oxygen functional groups, which makes the specific role of nitrogen difficult to isolate. To address this issue, we developed a series of NCs containing variable types and contents of nitrogen (5–30 at.%) and a constant oxygen content of approximately 4 at.%. Results show that the different types of nitrogen in the NCs, namely, graphitic nitrogen and pyridinic nitrogen, serve as electron-donating and -withdrawing modulators, respectively, and can tailor the oxidative dehydrogenation activity of the NCs. Additionally, graphitic nitrogen plays a role in mediating frustrated Lewis pairs consisting of pyridinic nitrogen and neighboring carbon atoms. These pairs are responsible for the activation of hydrogen–hydrogen bonds, which is the rate-determining step in nitrobenzene hydrogenation.
Zhang, X. F.; Lu, Y. B.; Han, Y. Y.; Feng, R. P.; Xie, Z. L. Unravelling the role of boron dopant in borocarbonitirde catalytic dehydrogenation reaction. J. Energy Chem. 2023, 85, 137–143.
Zhang, X. F.; Dai, X. Y.; Wu, K. H.; Su, B. J.; Chen, J. M.; Qi, W.; Xie, Z. L. A generalized approach to adjust the catalytic activity of borocarbonitride for alkane oxidative dehydrogenation reactions. J. Catal. 2022, 405, 105–115.
Zhang, H. X.; Fan, W. W.; Xia, Q. H.; Yang, H. M. Protein-assisted synthesis of zeolite-supported pseudo-single-atom cobalt catalyst for nitrobenzene hydrogenation. Chem. Eng. J. 2023, 469, 143870.
Luo, Z. C.; Nie, R. F.; Nguyen, V. T.; Biswas, A.; Behera, R. K.; Wu, X.; Kobayashi, T.; Sadow, A.; Wang, B.; Huang, W. Y. et al. Transition metal-like carbocatalyst. Nat. Commun. 2020, 11, 4091.
Ortiz-Medina, J.; Wang, Z. P.; Cruz-Silva, R.; Morelos-Gomez, A.; Wang, F.; Yao, X. D.; Terrones, M.; Endo, M. Defect engineering and surface functionalization of nanocarbons for metal-free catalysis. Adv. Mater. 2019, 31, 1805717.
Yang, N. J.; Zhang, H. Nanocarbon chemistry. Small 2019, 15, 1905367.
Shi, L.; Qi, W.; Liu, W.; Yan, P. Q.; Li, F.; Sun, J. M.; Su, D. S. Carbon nitride modified nanocarbon materials as efficient non-metallic catalysts for alkane dehydrogenation. Catal. Today 2018, 301, 48–54.
Li, G. Z.; Zheng, S. Y.; Wang, L.; Zhang, X. W. Metal-free chemoselective hydrogenation of nitroarenes by N-doped carbon nanotubes via in situ polymerization of pyrrole. ACS Omega 2020, 5, 7519–7528.
Liu, W.; Wang, C.; Herold, F.; Etzold, B. J. M.; Su, D. S.; Qi, W. Oxidative dehydrogenation on nanocarbon: Effect of heteroatom doping. Appl. Catal. B:Environ. 2019, 258, 117982.
Liu, N.; Ding, L. Z.; Li, H. J.; Jia, M. J.; Zhang, W. X.; An, N. H.; Yuan, X. L. N-doped nanoporous carbon as efficient catalyst for nitrobenzene reduction in sulfide-containing aqueous solutions. J. Colloid Interface Sci. 2017, 490, 677–684.
Huang, X. X.; Wu, S. L.; Xiao, Z. C.; Kong, D. B.; Liang, T.; Li, X. L.; Luo, B.; Wang, B.; Zhi, L. J. Predicting the optimal chemical composition of functionalized carbon catalysts towards oxidative dehydrogenation of ethanol to acetaldehyde. Nano Today 2022, 44, 101508.
Hou, Y.; Xia, M.; Han, Y. Y.; Zhang, X. F.; Lu, Y. B.; Yang, Q. H.; Xie, Z. L. Folic acid-derived Low-dimensional carbons for efficient oxidative dehydrogenation of ethylbenzene. J. Colloid Interface Sci. 2023, 638, 291–299.
Zhang, Z.; Yu, L.; Tu, Y. C.; Chen, R. X.; Wu, L. H.; Zhu, J. F.; Deng, D. H. Unveiling the active site of metal-free nitrogen-doped carbon for electrocatalytic carbon dioxide reduction. Cell Rep. Phys. Sci. 2020, 1, 100145.
Lepre, E.; Rat, S.; Cavedon, C.; Seeberger, P. H.; Pieber, B.; Antonietti, M.; López-Salas N. Catalytic properties of high nitrogen content carbonaceous materials. Angew. Chem. , Int. Ed. 2023, 62, e202211663.
Otero, R.; Schöck, M.; Molina, L. M.; Lægsgaard, E.; Stensgaard, I.; Hammer, B.; Besenbacher, F. Guanine quartet networks stabilized by cooperative hydrogen bonds. Angew. Chem. , Int. Ed. 2005, 44, 2270–2275.
Peters, G. M.; Davis, J. T. Supramolecular gels made from nucleobase, nucleoside and nucleotide analogs. Chem. Soc. Rev. 2016, 45, 3188–3206.
Wagner, A.; Upcher, A.; Maria, R.; Magnesen, T.; Zelinger, E.; Raposo, G.; Palmer, B. A. Macromolecular sheets direct the morphology and orientation of plate-like biogenic guanine crystals. Nat. Commun. 2023, 14, 589.
Huang, B. B.; Liu, Y. C.; Xie, Z. L. Two dimensional nanocarbons from biomass and biological molecules: Synthetic strategies and energy related applications. J. Energy Chem. 2021, 54, 795–814.
Huang, B. B.; Liu, Y. C.; Guo, Q.; Fang, Y. X.; Titirici, M. M.; Wang, X. C.; Xie, Z. L. Porous carbon nanosheets from biological nucleobase precursor as efficient pH-independent oxygen reduction electrocatalyst. Carbon 2020, 156, 179–186.
Kossmann, J.; Heil, T.; Antonietti, M.; López-Salas, N. Guanine-derived porous carbonaceous materials: Towards C1N1. ChemSusChem 2020, 13, 6643–6650.
Stefan, L.; Monchaud, D. Applications of guanine quartets in nanotechnology and chemical biology. Nat. Rev. Chem. 2019, 3, 650–668.
Herold, F.; Prosch, S.; Oefner, N.; Brunnengräber, K.; Leubner, O.; Hermans, Y.; Hofmann, K.; Drochner, A.; Hofmann, J. P.; Qi, W. et al. Nanoscale hybrid amorphous/graphitic carbon as key towards next-generation carbon-based oxidative dehydrogenation catalysts. Angew. Chem. , Int. Ed. 2021, 60, 5898–5906.
Um, J.; Yoon, S. U.; Kim, H.; Youn, B. S.; Jin, H. J.; Lim, H. K.; Yun, Y. S. High-performance solid-solution potassium-ion intercalation mechanism of multilayered turbostratic graphene nanosheets. J. Energy Chem. 2022, 67, 814–823.
Zhi, C. Y.; Bando, Y.; Tang, C. C.; Honda, S.; Sato, K.; Kuwahara, H.; Golberg, D. Covalent functionalization: Towards soluble multiwalled boron nitride nanotubes. Angew. Chem. , Int. Ed. 2005, 44, 7932–7935.
Lv, C. D.; Qian, Y. M.; Yan, C. S.; Ding, Y.; Liu, Y. Y.; Chen, G.; Yu, G. H. Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions. Angew. Chem. , Int. Ed. 2018, 57, 10246–10250.
Al-Zahrani, A. A.; Pasupulety, N.; Daous, M. A.; Driss, H.; Ali, A. M.; Zaman, S. F.; Petrov, L. A. Ethyl benzene oxidative dehydrogenation to styrene on Al-B and Al-B-Sb catalysts. Appl. Catal. A:Gen. 2018, 552, 49–57.
Xu, J.; Xue, B.; Liu, Y. M.; Li, Y. X.; Cao, Y.; Fan, K. N. Mesostructured Ni-doped ceria as an efficient catalyst for styrene synthesis by oxidative dehydrogenation of ethylbenzene. Appl. Catal. A:Gen. 2011, 405, 142–148.
Rennard, R. J. Jr.; Innes, R. A.; Swift, H. E. Oxidation over MgCrFeO4 and ZnCrFeO4 catalysts. J. Catal. 1973, 30, 128–138.
Emig, G.; Hofmann, H. Action of zirconium phosphate as a catalyst for the oxydehydrogenation of ethylbenzene to styrene. J. Catal. 1983, 84, 15–26.
Zhang, J.; Su, D. S.; Zhang, A. H.; Wang, D.; Schlögl, R.; Hébert, C. Nanocarbon as robust catalyst: Mechanistic insight into carbon-mediated catalysis. Angew. Chem. , Int. Ed. 2007, 46, 7319–7323.
Shan, J. X.; Sun, X. Q.; Zheng, S. Y.; Wang, T. D.; Zhang, X. W.; Li, G. Z. Graphitic N-dominated nitrogen-doped carbon nanotubes as efficient metal-free catalysts for hydrogenation of nitroarenes. Carbon 2019, 146, 60–69.
Xiong, W.; Wang, Z. N.; He, S. L.; Hao, F.; Yang, Y. Z.; Lv, Y.; Zhang, W. B.; Liu, P. L.; Luo, H. Nitrogen-doped carbon nanotubes as a highly active metal-free catalyst for nitrobenzene hydrogenation. Appl. Catal. B:Environ. 2020, 260, 118105.
Xu, F.; Zhai, Y. X.; Zhang, E.; Liu, Q. H.; Jiang, G. S.; Xu, X. S.; Qiu, Y. Q.; Liu, X. M.; Wang, H. Q.; Kaskel, S. Ultrastable surface-dominated pseudocapacitive potassium storage enabled by edge-enriched N-doped porous carbon nanosheets. Angew. Chem. , Int. Ed. 2020, 59, 19460–19467.
Zhang, X. F.; Yan, P. Q.; Xu, J. K.; Li, F.; Herold, F.; Etzold, B. J. M.; Wang, P.; Su, D. S.; Lin, S.; Qi, W. et al. Methanol conversion on borocarbonitride catalysts: Identification and quantification of active sites. Sci. Adv. 2020, 6, eaba5778.
Ou, H. H.; Lin, L. H.; Zheng, Y.; Yang, P. J.; Fang, Y. X.; Wang, X. C. Tri-s-triazine-based crystalline carbon nitride nanosheets for an improved hydrogen evolution. Adv. Mater. 2017, 29, 1700008.
Qi, W.; Liu, W.; Guo, X. L.; Schlögl, R.; Su, D. S. Oxidative dehydrogenation on nanocarbon: Intrinsic catalytic activity and structure-function relationships. Angew. Chem. , Int. Ed. 2015, 54, 13682–13685.
Frank, B.; Zhang, J.; Blume, R.; Schlögl, R.; Su, D. S. Heteroatoms increase the selectivity in oxidative dehydrogenation reactions on nanocarbons. Angew. Chem. , Int. Ed. 2009, 48, 6913–6917.
Chen, D. J.; Wang, Y. T.; Klankermayer, J. Enantioselective hydrogenation with chiral frustrated Lewis pairs. Angew. Chem. , Int. Ed. 2010, 49, 9475–9478.
Stephan, D. W. Frustrated Lewis pairs. J. Am. Chem. Soc. 2015, 137, 10018–10032.
Liu, L.; Cao, L. L.; Shao, Y.; Ménard, G.; Stephan, D. W. A radical mechanism for frustrated Lewis pair reactivity. Chem 2017, 3, 259–267.
Wan, Q.; Chen, Y.; Zhou, S. L.; Lin, J.; Lin, S. Selective hydrogenation of acetylene to ethylene on anatase TiO2 through first-principles studies. J. Mater. Chem. A 2021, 9, 14064–14073.
Huang, X. Y.; Zeng, X. H.; Zhang, X. F.; Xie, Z. L. Carbon-based frustrated Lewis pairs mediate hydrogenation. Phys. Chem. Chem. Phys. 2022, 24, 28895–28902.
Liao, C. J.; Liu, B.; Chi, Q.; Zhang, Z. H. Nitrogen-doped carbon materials for the metal-free reduction of nitro compounds. ACS Appl. Mater. Interfaces 2018, 10, 44421–44429.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.
Olsen, R. A.; Kroes, G. J.; Henkelman, G.; Arnaldsson, A.; Jónsson, H. Comparison of methods for finding saddle points without knowledge of the final states. J. Chem. Phys. 2004, 121, 9776–9792.
Heyden, A.; Bell, A. T.; Keil, F. J. Efficient methods for finding transition states in chemical reactions: Comparison of improved dimer method and partitioned rational function optimization method. J. Chem. Phys. 2005, 123, 224101.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See https://creativecommons.org/licenses/by/4.0/.