AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (50.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Perspective | Open Access

Fueling the future: Innovating the path to carbon-neutral skies with CO2-to-aviation fuel

Guo Tian1Chenxi Zhang1,2,3 ( )Fei Wei1,2 ( )
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Ordos Laboratory, Ordos 017010, China
Institute for Carbon Neutrality, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

This work reviews some innovative approaches to achieving carbon neutrality in aviation by converting CO2 to sustainable aviation fuel (SAF), assessing the feasibility of current CO2-to-jet fuel conversion methodologies and their potential environmental and economic impacts.

Abstract

Considering the increasing concerns regarding climate change, a fundamental transformation in global energy policies is imperative, particularly within the aviation sector, which is historically anchored in the consumption of fossil fuels. This perspective presents a scholarly evaluation of the progression from deep-rooted fossil-fuel-dependent technologies to innovative strategies aimed at carbon neutrality, specifically focusing on the formulation of sustainable aviation fuel from CO2. An analytical review of the cutting-edge methodologies for CO2-to-jet fuel conversion is provided, and the practicality of current industrial models are assessed. This perspective explores the intricate consequences of adopting such groundbreaking technologies and evaluates their technical practicability, economic feasibility, and environmental advantages. The insights obtained from this study will substantially contribute to the discussion on energy sustainability, emphasizing the synergy between sophisticated CO2 conversion processes and the overarching goal of realizing global carbon neutrality.

References

[1]

Scott, V.; Haszeldine, R. S.; Tett, S. F. B.; Oschlies, A. Fossil fuels in a trillion tonne world. Nat. Climate Change 2015, 5, 419–423.

[2]

Welsby, D.; Price, J.; Pye, S.; Ekins, P. Unextractable fossil fuels in a 1.5 °C world. Nature 2021, 597, 230–234.

[3]

York, R. Do alternative energy sources displace fossil fuels. Nat. Climate Change 2012, 2, 441–443.

[4]

Schwietzke, S.; Sherwood, O. A.; Bruhwiler, L. M. P.; Miller, J. B.; Etiope, G.; Dlugokencky, E. J.; Michel, S. E.; Arling, V. A.; Vaughn, B. H.; White, J. W. C. et al. Upward revision of global fossil fuel methane emissions based on isotope database. Nature 2016, 538, 88–91.

[5]

Shindell, D.; Smith, C. J. Climate and air-quality benefits of a realistic phase-out of fossil fuels. Nature 2019, 573, 408–411.

[6]

Liu, Z.; Deng, Z.; He, G.; Wang, H. L.; Zhang, X.; Lin, J.; Qi, Y.; Liang, X. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 2022, 3, 141–155.

[7]

Seneviratne, S. I.; Donat, M. G.; Pitman, A. J.; Knutti, R.; Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 2016, 529, 477–483.

[8]

Buckley, R. C.; Chauvenet, A. L. M. Economic value of nature via healthcare savings and productivity increases. Biol. Conserv. 2022, 272, 109665.

[9]

Liu, Z.; Deng, Z.; Davis, S. J.; Giron, C.; Ciais, P. Monitoring global carbon emissions in 2021. Nat. Revi. Earth Environ. 2022, 3, 217–219.

[10]

Crippa, M.; Solazzo, E.; Huang, G. L.; Guizzardi, D.; Koffi, E.; Muntean, M.; Schieberle, C.; Friedrich, R.; Janssens-Maenhout, G. High resolution temporal profiles in the emissions database for global atmospheric research. Sci. Data 2020, 7, 121.

[11]

Abbasi, K. R.; Shahbaz, M.; Zhang, J. J.; Irfan, M.; Alvarado, R. Analyze the environmental sustainability factors of China: The role of fossil fuel energy and renewable energy. Renewable Energy 2022, 187, 390–402.

[12]

Olabi, A. G.; Abdelkareem, M. A. Renewable energy and climate change. Renewable Sustainable Energy Rev. 2022, 158, 112111.

[13]

Che, X. J.; Zhou, P.; Chai, K. H. Regional policy effect on photovoltaic (PV) technology innovation: Findings from 260 cities in China. Energy Policy 2022, 162, 112807.

[14]

Wang, W.; Zhao, X. G. Can the incentives polices promote the diffusion of distributed photovoltaic power in China. Environ. Sci. Pollut. Res. 2022, 29, 30394–30409.

[15]

Wang, L.; Tang, Y.; Zhang, S.; Wang, F. Z.; Wang, J. Energy yield analysis of different bifacial PV (photovoltaic) technologies: TOPCon, HJT, PERC in Hainan. Sol. Energy 2022, 238, 258–263.

[16]

Zhang, X. H.; Xu, M.; Wang, S. J.; Huang, Y. K.; Xie, Z. Y. Mapping photovoltaic power plants in China using landsat, random forest, and google earth engine. Earth Syst. Sci. Data 2022, 14, 3743–3755.

[17]

Zhao, G.; Zhou, P.; Wen, W. What cause regional inequality of technology innovation in renewable energy? Evidence from China. Appl. Energy 2022, 310, 118464.

[18]

Jiang, L. D.; Zou, F.; Qiao, Y. L.; Huang, Y. Patent analysis for generating the technology landscape and competition situation of renewable energy. J. Cleaner Prod. 2022, 378, 134264.

[19]

Crijns-Graus, W.; Wild, P.; Amineh, M. P.; Hu, J.; Yue, H. International comparison of research and investments in new renewable electricity technologies: A focus on the European union and China. Energies 2022, 15, 6383.

[20]

Sun, Y. P.; Razzaq, A.; Sun, H. P.; Irfan, M. The asymmetric influence of renewable energy and green innovation on carbon neutrality in China: Analysis from non-linear ARDL model. Renewable Energy 2022, 193, 334–343.

[21]

Bracci, J. M.; Sherwin, E. D.; Boness, N. L.; Brandt, A. R. A cost comparison of various hourly-reliable and net-zero hydrogen production pathways in the United States. Nat. Commun. 2023, 14, 7391.

[22]

Li, R. Z.; Jin, X. M.; Yang, P.; Zheng, M.; Zheng, Y.; Cai, C. R.; Sun, X.; Luo, Z. B.; Zhao, L. Y.; Huang, Z. H. et al. Capacity optimization of a wind-photovoltaic-electrolysis-battery (WPEB) hybrid energy system for power and hydrogen generation. Int. J. Hydrogen Energy 2023, 52, 311–333.

[23]

Chen, H. P.; Wu, H.; Kan, T. Y.; Zhang, J. H.; Li, H. L. Low-carbon economic dispatch of integrated energy system containing electric hydrogen production based on VMD-GRU short-term wind power prediction. Int. J. Electr. Power Energy Syst. 2023, 154, 109420.

[24]

Al-Ghussain, L.; Ahmad, A. D.; Abubaker, A. M.; Hovi, K.; Hassan, M. A.; Annuk, A. Techno-economic feasibility of hybrid PV/wind/battery/thermal storage trigeneration system: Toward 100% energy independency and green hydrogen production. Energy Rep. 2023, 9, 752–772.

[25]

He, H. J.; Huang, Y. Y.; Nakadomari, A.; Masrur, H.; Krishnan, N.; Hemeida, A. M.; Mikhaylov, A.; Senjyu, T. Potential and economic viability of green hydrogen production from seawater electrolysis using renewable energy in remote Japanese islands. Renewable Energy 2023, 202, 1436–1447.

[26]

Li, Y. F.; Taghizadeh-Hesary, F. The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China. Energy Policy 2022, 160, 112703.

[27]

Xiang, H.; Ch, P.; Nawaz, M. A.; Chupradit, S.; Fatima, A.; Sadiq, M. Integration and economic viability of fueling the future with green hydrogen: An integration of its determinants from renewable economics. Int. J. Hydrogen Energy 2021, 46, 38145–38162.

[28]
Rane, N. Role of ChatGPT and similar generative artificial intelligence (AI) in construction industry. Available at SSRN 4598258, 2023.
[29]

Mohammad, A.; Mahjabeen, F. Revolutionizing solar energy: The impact of artificial intelligence on photovoltaic systems. Int. J. Multidiscip. Sci. Arts 2023, 2, 117–127.

[30]

Gulati, S.; Vijayan, S.; Mansi, N.; Kumar, S.; Harikumar, B.; Trivedi, M.; Varma, R. S. Recent advances in the application of metal–organic frameworks (MOFs)-based nanocatalysts for direct conversion of carbon dioxide (CO2) to value-added chemicals. Coord. Chem. Rev. 2023, 474, 214853.

[31]

Zhang, W. J.; Jin, Z.; Chen, Z. P. Rational‐designed principles for electrochemical and photoelectrochemical upgrading of CO2 to value-added chemicals. Adv. Sci. 2022, 9, 2105204.

[32]

Tian, G.; Liu, X. Y.; Zhang, C. X.; Fan, X. Y.; Xiong, H.; Chen, X.; Li, Z. W.; Yan, B. H.; Zhang, L.; Wang, N. et al. Accelerating syngas-to-aromatic conversion via spontaneously monodispersed Fe in ZnCr2O4 spinel. Nat. Commun. 2022, 13, 5567.

[33]
Agarwal, A. S.; Rode, E.; Sridhar, N.; Hill, D. Conversion of CO2 to value added chemicals: Opportunities and challenges. In Handbook of Climate Change Mitigation and Adaptation. 3rd ed. Lackner, M.; Sajjadi, B.; Chen, W. Y., Eds.; Springer: Cham, 2022; pp 1585–1623.
[34]

Yaashikaa, P. R.; Kumar, P. S.; Varjani, S. J.; Saravanan, A. A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products. J. CO2 Util. 2019, 33, 131–147.

[35]

Wang, Y.; Gao, W. Z.; Kazumi, S.; Li, H. J.; Yang, G. H.; Tsubaki, N. Direct and oriented conversion of CO2 into value-added aromatics. Chem. -Eur. J. 2019, 25, 5149–5153.

[36]

Tian, G.; Liang, X. Y.; Xiong, H.; Zhang, C. X.; Wei, F. A perspective of CO x conversion to aromatics. EES Catal. 2023, 1, 677–686.

[37]
Saeidi, S.; Amin, N. A. S.; Rahimpour, M. R. Hydrogenation of CO2 to value-added products-a review and potential future developments. J. CO 2 Util. 2014 , 5, 66–81.
[38]

Tian, G.; Zhang, C. X.; Wei, F. CO x conversion to aromatics: A mini-review of nanoscale performance. Nanoscale Horiz. 2022, 7, 1478–1487.

[39]

Li, J.; He, Y. L.; Tan, L.; Zhang, P. P.; Peng, X. B.; Oruganti, A.; Yang, G. H.; Abe, H.; Wang, Y.; Tsubaki, N. Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. Nat. Catal. 2018, 1, 787–793.

[40]

Li, J.; Sun, J.; Fan, R. G.; Yoneyama, Y.; Yang, G. H.; Tsubaki, N. Selectively converting biomass to jet fuel in large‐scale apparatus. ChemCatChem 2017, 9, 2668–2674.

[41]

Wei, J.; Ge, Q. J.; Yao, R. W.; Wen, Z. Y.; Fang, C. Y.; Guo, L. S.; Xu, H. Y.; Sun, J. Directly converting CO2 into a gasoline fuel. Nat. Commun. 2017, 8, 15174.

[42]

Gao, P.; Li, S. G.; Bu, X. N.; Dang, S. S.; Liu, Z. Y.; Wang, H.; Zhong, L. S.; Qiu, M. H.; Yang, C. G.; Cai, J. et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem. 2017, 9, 1019–1024.

[43]

Liu, G. R.; Yan, B. B.; Chen, G. Y. Technical review on jet fuel production. Renewable Sustainable Energy Rev. 2013, 25, 59–70.

[44]

Olabi, A. G.; Wilberforce, T.; Abdelkareem, M. A. Fuel cell application in the automotive industry and future perspective. Energy 2021, 214, 118955.

[45]

Kavanagh, L.; Keohane, J.; Garcia Cabellos, G.; Lloyd, A.; Cleary, J. Global lithium sources-industrial use and future in the electric vehicle industry: A review. Resources 2018, 7, 57.

[46]

Doliente, S. S.; Narayan, A.; Tapia, J. F. D.; Samsatli, N. J.; Zhao, Y. R.; Samsatli, S. Bio-aviation fuel: A comprehensive review and analysis of the supply chain components. Front. Energy Res. 2020, 8, 110.

[47]

Arslan, M. T.; Tian, G.; Ali, B.; Zhang, C. X.; Xiong, H.; Li, Z. W.; Luo, L. Q.; Chen, X.; Wei, F. Highly selective conversion of CO2 or CO into precursors for kerosene-based aviation fuel via an aldol-aromatic mechanism. ACS Catal. 2022, 12, 2023–2033.

[48]

Adam, S.; Delestre, I.; Levell, P.; Miller, H. Tax policies to reduce carbon emissions. Fiscal Stud. 2022, 43, 235–263.

[49]

McGinnis, R. CO2-to-fuels renewable gasoline and jet fuel can soon be price competitive with fossil fuels. Joule 2020, 4, 509–511.

[50]

Zhang, L.; Dang, Y. R.; Zhou, X. H.; Gao, P.; van Bavel, A. P.; Wang, H.; Li, S. G.; Shi, L.; Yang, Y.; Vovk, E. I. et al. Direct conversion of CO2 to a jet fuel over CoFe alloy catalysts. Innovation 2021, 2, 100170.

[51]

Yao, B. Z.; Xiao, T. C.; Makgae, O. A.; Jie, X. Y.; Gonzalez-Cortes, S.; Guan, S. L.; Kirkland, A. I.; Dilworth, J. R.; Al-Megren, H. A.; Alshihri, S. M. et al. Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst. Nat. Commun. 2020, 11, 6395.

[52]

Arslan, M. T.; Ali, B.; Gilani, S. Z. A.; Hou, Y. L.; Wang, Q.; Cai, D. L.; Wang, Y.; Wei, F. Selective conversion of syngas into tetramethylbenzene via an aldol-aromatic mechanism. ACS Catal. 2020, 10, 2477–2488.

[53]

Shahinuzzaman, M.; Yaakob, Z.; Ahmed, Y. Non-sulphide zeolite catalyst for bio-jet-fuel conversion. Renewable Sustainable Energy Rev. 2017, 77, 1375–1384.

[54]

Liu, X.; Hang, Y.; Wang, Q. W.; Zhou, D. Q. Flying into the future: A scenario-based analysis of carbon emissions from China's civil aviation. J. Air Transp. Manage. 2020, 85, 101793.

[55]
Cogan, D. G. Corporate Governance and Climate Change: Making the Connection; Ceres: Boston, 2006.
Carbon Future
Article number: 9200010
Cite this article:
Tian G, Zhang C, Wei F. Fueling the future: Innovating the path to carbon-neutral skies with CO2-to-aviation fuel. Carbon Future, 2024, 1(2): 9200010. https://doi.org/10.26599/CF.2024.9200010

3013

Views

810

Downloads

0

Crossref

Altmetrics

Received: 22 November 2023
Revised: 10 February 2024
Accepted: 02 March 2024
Published: 10 April 2024
© The Author(s) 2024.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See https://creativecommons.org/licenses/by/4.0/.

Return