Conversion of carbon dioxide (CO2) to C1 products such as carbon monoxide (CO) is a critical step towards carbon valorization. The conversion has been largely carried out through the reverse water gas shift (RWGS) reaction using noble metal catalysts or copper-based nanostructures. Similarities in the electronic structures between beta phase molybdenum carbides (β-Mo2C) and platinum-group metals make them promising alternatives to traditional catalysts. In this work, we studied the effect of oxide supports (MOx, M = Al, Ce, Mg, Si, and Ti) on the formation and catalytic properties of β-Mo2C nanoparticle catalysts. The β-Mo2C/SiO2 catalyst exhibited a mass activity of 372 μmolCO2∙
Davis, S. J.; Caldeira, K.; Matthews, H. D. Future CO2 emissions and climate change from existing energy infrastructure. Science 2010, 329, 1330–1333.
Baxter, J.; Bian, Z. X.; Chen, G.; Danielson, D.; Dresselhaus, M. S.; Fedorov, A. G.; Fisher, T. S.; Jones, C. W.; Maginn, E.; Kortshagen, U. et al. Nanoscale design to enable the revolution in renewable energy. Energy Environ. Sci. 2009, 2, 559–588.
Navarro-Jaén, S.; Virginie, M.; Bonin, J.; Robert, M.; Wojcieszak, R.; Khodakov, A. Y. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat. Rev. Chem. 2021, 5, 564–579.
Kubas, D.; Semmel, M.; Salem, O.; Krossing, I. Is direct DME synthesis superior to methanol production in carbon dioxide valorization? From thermodynamic predictions to experimental confirmation. ACS Catal. 2023, 13, 3960–3970.
Centi, G.; Quadrelli, E. A.; Perathoner, S. Catalysis for CO2 conversion: A key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ. Sci. 2013, 6, 1711–1731.
Jiang, X.; Nie, X. W.; Guo, X. W.; Song, C. S.; Chen, J. G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem. Rev. 2020, 120, 7984–8034.
Ojeda, M.; Nabar, R.; Nilekar, A. U.; Ishikawa, A.; Mavrikakis, M.; Iglesia, E. CO activation pathways and the mechanism of Fischer–Tropsch synthesis. J. Catal. 2010, 272, 287–297.
Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 2012, 336, 893–897.
Jhong, H. R. M.; Ma, S. C.; Kenis, P. J. A. Electrochemical conversion of CO2 to useful chemicals: Current status, remaining challenges, and future opportunities. Curr. Opin. Chem. Eng. 2013, 2, 191–199.
Lu, X. F.; Liu, Y.; He, Y. R.; Kuhn, A. N.; Shih, P. C.; Sun, C. J.; Wen, X. D.; Shi, C.; Yang, H. Cobalt-based nonprecious metal catalysts derived from metal-organic frameworks for high-rate hydrogenation of carbon dioxide. ACS Appl. Mater. Interfaces 2019, 11, 27717–27726.
Daza, Y. A.; Kuhn, J. N. CO2 conversion by reverse water gas shift catalysis: Comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels. RSC Adv. 2016, 6, 49675–49691.
Yusuf, N.; Almomani, F.; Qiblawey, H. Catalytic CO2 conversion to C1 value-added products: Review on latest catalytic and process developments. Fuel 2023, 345, 128178.
Das, S.; Pérez-Ramírez, J.; Gong, J. L.; Dewangan, N.; Hidajat, K.; Gates, B. C.; Kawi, S. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem. Soc. Rev. 2020, 49, 2937–3004.
Sun, L. B.; Reddu, V.; Fisher, A. C.; Wang, X. Electrocatalytic reduction of carbon dioxide: Opportunities with heterogeneous molecular catalysts. Energy Environ. Sci. 2020, 13, 374–403.
Najimu, M.; Jo, S.; Gilliard-AbdulAziz, K. L. Co-exsolution of Ni-based alloy catalysts for the valorization of carbon dioxide and methane. Acc. Chem. Res. 2023, 56, 3132–3141.
Jurković, D. L.; Pohar, A.; Dasireddy, V. D. B. C.; Likozar, B. Effect of copper-based catalyst support on reverse water-gas shift reaction (RWGS) activity for CO2 reduction. Chem. Eng. Technol. 2017, 40, 973–980.
Jurković, D. L.; Prašnikar, A.; Pohar, A.; Likozar, B. Surface structure-based CO2 reduction reaction modelling over supported copper catalysts. J. CO2 Util. 2020, 41, 101234.
Kopač, D.; Likozar, B.; Huš, M. How size matters: Electronic, cooperative, and geometric effect in perovskite-supported copper catalysts for CO2 reduction. ACS Catal. 2020, 10, 4092–4102.
Zhang, X.; Zhu, X. B.; Lin, L. L.; Yao, S. Y.; Zhang, M. T.; Liu, X.; Wang, X. P.; Li, Y. W.; Shi, C.; Ma, D. Highly dispersed copper over β-Mo2C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction. ACS Catal. 2017, 7, 912–918.
Ronda-Lloret, M.; Rico-Francés, S.; Sepúlveda-Escribano, A.; Ramos-Fernandez, E. V. CuO x /CeO2 catalyst derived from metal organic framework for reverse water-gas shift reaction. Appl. Catal. A Gen. 2018, 562, 28–36.
Zhang, X.; Shi, C.; Chen, B. B.; Kuhn, A. N.; Ma, D.; Yang, H. Progress in hydrogen production over transition metal carbide catalysts: Challenges and opportunities. Curr. Opin. Chem. Eng. 2018, 20, 68–77.
Morse, J. R.; Juneau, M.; Baldwin, J. W.; Porosoff, M. D.; Willauer, H. D. Alkali promoted tungsten carbide as a selective catalyst for the reverse water gas shift reaction. J. CO2 Util. 2020, 35, 38–46.
Dasireddy, V. D. B. C.; Vengust, D.; Likozar, B.; Kovač, J.; Mrzel, A. Production of syngas by CO2 reduction through reverse water-gas shift (RWGS) over catalytically-active molybdenum-based carbide, nitride and composite nanowires. Renew. Energy 2021, 176, 251–261.
Figueras, M.; Gutiérrez, R. A.; Viñes, F.; Ramírez, P. J.; Rodriguez, J. A.; Illas, F. Supported molybdenum carbide nanoparticles as an excellent catalyst for CO2 hydrogenation. ACS Catal. 2021, 11, 9679–9687.
Juneau, M.; Yaffe, D.; Liu, R. J.; Agwara, J. N.; Porosoff, M. D. Establishing tungsten carbides as active catalysts for CO2 hydrogenation. Nanoscale 2022, 14, 16458–16466.
Hunt, S. T.; Milina, M.; Alba-Rubio, A. C.; Hendon, C. H.; Dumesic, J. A.; Román-Leshkov, Y. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 2016, 352, 974–978.
Lin, L. L.; Zhou, W.; Gao, R.; Yao, S. Y.; Zhang, X.; Xu, W. Q.; Zheng, S. J.; Jiang, Z.; Yu, Q. L.; Li, Y. W. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80–83.
Yao, S. Y.; Zhang, X.; Zhou, W.; Gao, R.; Xu, W. Q.; Ye, Y. F.; Lin, L. L.; Wen, X. D.; Liu, P.; Chen, B. B. et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 2017, 357, 389–393.
Zhang, Q.; Pastor-Pérez, L.; Jin, W.; Gu, S.; Reina, T. R. Understanding the promoter effect of Cu and Cs over highly effective β-Mo2C catalysts for the reverse water-gas shift reaction. Appl. Catal. B Environ. 2019, 244, 889–898.
Carrasquillo-Flores, R.; Ro, I.; Kumbhalkar, M. D.; Burt, S.; Carrero, C. A.; Alba-Rubio, A. C.; Miller, J. T.; Hermans, I.; Huber, G. W.; Dumesic, J. A. Reverse water-gas shift on interfacial sites formed by deposition of oxidized molybdenum moieties onto gold nanoparticles. J. Am. Chem. Soc. 2015, 137, 10317–10325.
Vitale, G.; Guzmán, H.; Frauwallner, M. L.; Scott, C. E.; Pereira-Almao, P. Synthesis of nanocrystalline molybdenum carbide materials and their characterization. Catal. Today 2015, 250, 123–133.
Baddour, F. G.; Roberts, E. J.; To, A. T.; Wang, L.; Habas, S. E.; Ruddy, D. A.; Bedford, N. M.; Wright, J.; Nash, C. P.; Schaidle, J. A. et al. An exceptionally mild and scalable solution-phase synthesis of molybdenum carbide nanoparticles for thermocatalytic CO2 hydrogenation. J. Am. Chem. Soc. 2020, 142, 1010–1019.
Porosoff, M. D.; Kattel, S.; Li, W. H.; Liu, P.; Chen, J. G. Identifying trends and descriptors for selective CO2 conversion to CO over transition metal carbides. Chem. Commun. 2015, 51, 6988–6991.
Xu, C.; Wang, L. B.; Liu, Z. B.; Chen, L.; Guo, J. K.; Kang, N.; Ma, X. L.; Cheng, H. M.; Ren, W. C. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 2015, 14, 1135–1141.
Zhang, X.; Liu, Y.; Zhang, M. T.; Yu, T.; Chen, B. B.; Xu, Y.; Crocker, M.; Zhu, X. B.; Zhu, Y. C.; Wang, R. M. et al. Synergy between β-Mo2C nanorods and non-thermal plasma for selective CO2 reduction to CO. Chem 2020, 6, 3312–3328.
Abou Hamdan, M.; Nassereddine, A.; Checa, R.; Jahjah, M.; Pinel, C.; Piccolo, L.; Perret, N. Supported molybdenum carbide and nitride catalysts for carbon dioxide hydrogenation. Front. Chem. 2020, 8, 452.
Levy, R. B.; Boudart, M. Platinum-like behavior of tungsten carbide in surface catalysis. Science 1973, 181, 547–549.
Dos Santos Politi, J. R.; Viñes, F.; Rodriguez, J. A.; Illas, F. Atomic and electronic structure of molybdenum carbide phases: Bulk and low miller-index surfaces. Phys. Chem. Chem. Phys. 2013, 15, 12617–12625.
Liu, X. Y.; Kunkel, C.; Ramírez De La Piscina, P.; Homs, N.; Viñes, F.; Illas, F. Effective and highly selective CO generation from CO2 using a polycrystalline α-Mo2C catalyst. ACS Catal. 2017, 7, 4323–4335.
Xiong, K.; Zhou, G. L.; Zhang, H. D.; Shen, Y.; Zhang, X. M.; Zhang, Y. H.; Li, J. L. Bridging Mo2C-C and highly dispersed copper by incorporating N-functional groups to greatly enhance the catalytic activity and durability for carbon dioxide hydrogenation. J. Mater. Chem. A 2018, 6, 15510–15516.
Kuhn, A. N.; Chen, Z. T.; Lu, Y. Q.; Yang, H. Sequential oxygen reduction and adsorption for carbon dioxide purification for flue gas applications. Energy Technol. 2019, 7, 1800917.
Kuhn, A. N.; Ma, Y. L.; Zhang, C.; Chen, Z. T.; Liu, M. Y.; Lu, Y. Q.; Yang, H. Selective reduction of oxygen on non-noble metal copper nanocatalysts. Energy Technol. 2020, 8, 1901213.
Ma, Y.; Guo, Z. L.; Jiang, Q.; Wu, K. H.; Gong, H. M.; Liu, Y. F. Molybdenum carbide clusters for thermal conversion of CO2 to CO via reverse water-gas shift reaction. J. Energy Chem. 2020, 50, 37–43.
Jurado, A.; Morales-García, Á.; Viñes, F.; Illas, F. Molecular mechanism and microkinetic analysis of the reverse water gas shift reaction heterogeneously catalyzed by the Mo2C MXene. ACS Catal. 2022, 12, 15658–15667.
Porosoff, M. D.; Yang, X. F.; Boscoboinik, J. A.; Chen, J. G. Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO. Angew. Chem., Int. Ed. 2014, 53, 6705–6709.
Porosoff, M. D.; Baldwin, J. W.; Peng, X.; Mpourmpakis, G.; Willauer, H. D. Potassium-promoted molybdenum carbide as a highly active and selective catalyst for CO2 conversion to CO. ChemSusChem 2017, 10, 2408–2415.