AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Phosphorus modified onion-like carbon catalyzed methanol conversion to dimethoxymethane: The unique role of C–P species

Xueya Dai1,2,#Pengqiang Yan1,#Yunli Bai1,2Miao Guo1Wei Qi1,2 ( )
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China

# Xueya Dai and Pengqiang Yan contributed equally to this work.

Show Author Information

Graphical Abstract

Efficient one-step synthesis of dimethoxymethane (DMM) from methanol was achieved over nonmetallic P-modified nanocarbon materials, in which C–P species were found as the key factor for high DMM formation rate.

Abstract

One-step synthesis of dimethoxymethane (DMM) via selective oxidation of methanol under nanocarbon catalysis is a green and sustainable but challenging chemical process. In the present study, a series of phosphorus-modified onion-like carbon (POLC) was prepared, and they have shown high activity in methanol conversion to DMM reaction. The proposed POLC catalysts exhibit two kinds of P-containing species, and C–P species is considered as the key factor to ensure the high DMM formation rate via linking the chemical structure to the catalytic performance of the catalysts. A temperature-programmed desorption experiment of the intermediate product formaldehyde (FA) reveals that the physical–chemical nature behind the promotion effect of C–P species enhances the adsorption ability of the catalyst to FA, thereby ensuring the subsequent condensation reactions to form DMM under high selectivity.

Electronic Supplementary Material

Download File(s)
0012_ESM.pdf (1.2 MB)

References

[1]

Rogelj, J.; Den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris agreement climate proposals need a boost to keep warming well below 2 °C. Nature 2016, 534, 631–639.

[2]

Dai, X. Y.; Qi, K.; Liu, C. W.; Lu, X. Y.; Qi, W. Cooperative multifunctional nanocarbon as efficient electro-catalysts for CO2 fixation to value-added cyclic carbonates under mild conditions. Carbon 2023, 202, 51–58.

[3]

Jacobson, M. Z. Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2009, 2, 148–173.

[4]

Mebrahtu, C.; Sun, R. Y.; Gierlich, C. H.; Palkovits, R. Unraveling the structure-activity relationships of Cu/H-BEA bifunctional catalyst for selective synthesis of dimethoxymethane by non-oxidative dehydrogenation of methanol. Appl. Catal. B Environ. 2021, 287, 119964.

[5]

Cai, J. X.; Fu, Y. C.; Sun, Q.; Jia, M. H.; Shen, J. Y. Effect of acidic promoters on the titania-nanotubes supported V2O5 catalysts for the selective oxidation of methanol to dimethoxymethane. Chin. J. Catal. 2013, 34, 2110–2117.

[6]

Zhang, X. F.; Lin, X. Y.; Huang, X. Y.; Chen, Y. Q.; Lin, S.; Huang, X.; Xie, Z. L. Identification of role of nitrogen dopants in nanocarbon catalysis. Carbon Fut. 2024, 1, 9200008.

[7]

Faye, J.; Capron, M.; Takahashi, A.; Paul, S.; Katryniok, B.; Fujitani, T.; Dumeignil, F. Effect of oxomolybdate species dispersion on direct methanol oxidation to dimethoxymethane over MoO x /TiO2 catalysts. Energy Sci. Eng. 2014, 3, 115–125.

[8]

Ftouni, K.; Lakiss, L.; Thomas, S.; Daturi, M.; Fernandez, C.; Bazin, P.; El Fallah, J.; El-Roz, M. TiO2/zeolite bifunctional (photo)catalysts for a selective conversion of methanol to dimethoxymethane: On the role of brønsted acidity. J. Phys. Chem. C 2018, 122, 29359–29367.

[9]

Sun, R. Y.; Delidovich, I.; Palkovits, R. Dimethoxymethane as a cleaner synthetic fuel: Synthetic methods, catalysts, and reaction mechanism. ACS Catal. 2019, 9, 1298–1318.

[10]

Fu, Y. C.; Sun, Q.; Shen, J. Y. Synthesis and reforming of dimethoxymethane. Chin. J. Catal. 2009, 30, 791–800.

[11]

Chen, W. Y.; Zuo, J.; Sang, K.; Qian, G.; Zhang, J.; Chen, D.; Zhou, X. G.; Yuan, W. K.; Duan, X. Z. Leveraging the proximity and distribution of Cu-Cs sites for direct conversion of methanol to esters/aldehydes. Angew. Chem., Int. Ed. 2024, 63, e202314288.

[12]

Kaichev, V. V.; Popova, G. Y.; Chesalov, Y. A.; Saraev, A. A.; Zemlyanov, D. Y.; Beloshapkin, S. A.; Knop-Gericke, A.; Schlögl, R.; Andrushkevich, T. V.; Bukhtiyarov, V. I. Selective oxidation of methanol to form dimethoxymethane and methyl formate over a monolayer V2O5/TiO2 catalyst. J. Catal. 2014, 311, 59–70.

[13]

Bai, Y. L.; Dai, X. Y.; Cao, T. L.; Qi, W. N,O-codoped onion-like carbon catalyzed selective oxidation of methanol to dimethoxymethane: Structure-activity relationship. ChemCatChem 2023, 15, e202300813.

[14]

Yan, P. Q.; Zhang, X. F.; Herold, F.; Li, F.; Dai, X. L.; Cao, T. L.; Etzold, B. J. M.; Qi, W. Methanol oxidative dehydrogenation and dehydration on carbon nanotubes: Active sites and basic reaction kinetics. Catal. Sci. Technol. 2020, 10, 4952–4959.

[15]

Qi, W.; Yan, P. Q.; Su, D. S. Oxidative dehydrogenation on nanocarbon: Insights into the reaction mechanism and kinetics via in situ experimental methods. Acc. Chem. Res. 2018, 51, 640–648.

[16]

Chen, W. Y.; Qian, G.; Wan, Y.; Chen, D.; Zhou, X. G.; Yuan, W. K.; Duan, X. Z. Mesokinetics as a tool bridging the microscopic-to-macroscopic transition to rationalize catalyst design. Acc. Chem. Res. 2022, 55, 3230–3241.

[17]

Li, W. H.; Hu, S. H.; Luo, X. Y.; Li, Z. L.; Sun, X. Z.; Li, M. S.; Liu, F. F.; Yu, Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 2017, 29, 1605820.

[18]
Dai, X. Y.; Qi, W. Novel alkane dehydrogenation routes via tailored catalysts. ChemCatChem, in press, DOI: 10.1002/cctc.202400410.
[19]

Chen, W. Y.; Fu, W. Z.; Duan, X. Z.; Chen, B. X.; Qian, G.; Si, R.; Zhou, X. G.; Yuan, W. K.; Chen, D. Taming electrons in Pt/C catalysts to boost the mesokinetics of hydrogen production. Engineering 2022, 14, 124–133.

[20]

Qi, W.; Liu, W.; Zhang, B. S.; Gu, X. M.; Guo, X. L.; Su, D. S. Oxidative dehydrogenation on nanocarbon: Identification and quantification of active sites by chemical titration. Angew. Chem., Int. Ed. 2013, 52, 14224–14228.

[21]

Zhang, X. F.; Yan, P. Q.; Xu, J. K.; Li, F.; Herold, F.; Etzold, B. J. M.; Wang, P.; Su, D. S.; Lin, S.; Qi, W. et al. Methanol conversion on borocarbonitride catalysts: Identification and quantification of active sites. Sci. Adv. 2020, 6, eaba5778.

[22]
Zhang, L. H.; Shi, Y. M.; Wang, Y.; Shiju, N. R. Nanocarbon catalysts: Recent understanding regarding the active sites. Adv. Sci. (Weinh.) 2020 , 7, 1902126.
[23]

Feng, L. Y.; Qin, Z. Y.; Huang, Y. J.; Peng, K. S.; Wang, F.; Yan, Y. Y.; Chen, Y. G. Boron-, sulfur-, and phosphorus-doped graphene for environmental applications. Sci. Total Environ. 2020, 698, 134239.

[24]

Ortiz-Medina, J.; Wang, Z. P.; Cruz-Silva, R.; Morelos-Gomez, A.; Wang, F.; Yao, X. D.; Terrones, M.; Endo, M. Defect engineering and surface functionalization of nanocarbons for metal-free catalysis. Adv. Mater. 2019, 31, 1805717.

[25]

Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Antonietti, M.; Garcia, H. Active sites on graphene-based materials as metal-free catalysts. Chem. Soc. Rev. 2017, 46, 4501–4529.

[26]

Zhang, J.; Liu, X.; Blume, R.; Zhang, A. H.; Schlogl, R.; Su, D. S. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane. Science 2008, 322, 73–77.

[27]

Puziy, A. M.; Poddubnaya, O. I.; Gawdzik, B.; Tascón, J. M. D. Phosphorus-containing carbons: Preparation, properties and utilization. Carbon 2020, 157, 796–846.

[28]

Zhu, Y. S.; Lin, Y. M.; Zhang, B. S.; Rong, J. F.; Zong, B. N.; Su, D. S. Nitrogen-doped annealed nanodiamonds with varied sp2/sp3 ratio as metal-free electrocatalyst for the oxygen reduction reaction. ChemCatChem 2015, 7, 2840–2845.

[29]

Zhang, L. Y.; Ding, Y. X.; Koh, Y. E.; Mun, B. S.; Wu, K. H.; Niu, Y. M.; Shi, W.; Zhang, B. S. Probing the origin of the enhanced catalytic performance of sp3@sp2 nanocarbon supported Pd catalyst for CO oxidation. Carbon 2020, 156, 463–469.

[30]

Wang, D.; Liu, W.; Xie, Z. L.; Tian, S. Y.; Su, D. S.; Qi, W. Oxidative dehydrogenation of ethyl lactate over nanocarbon catalysts: Effect of oxygen functionalities and defects. Catal. Today 2020, 347, 96–101.

[31]

Patel, M. A.; Luo, F. X.; Khoshi, M. R.; Rabie, E.; Zhang, Q.; Flach, C. R.; Mendelsohn, R.; Garfunkel, E.; Szostak, M.; He, H. X. P-doped porous carbon as metal free catalysts for selective aerobic oxidation with an unexpected mechanism. ACS Nano 2016, 10, 2305–2315.

[32]

Dai, X. Y.; Cao, T. L.; Lu, X. Y.; Bai, Y. L.; Qi, W. Tailored Pd/C bifunctional catalysts for styrene production under an ethylbenzene oxidative dehydrogenation assisted direct dehydrogenation scheme. Appl. Catal. B Environ. 2023, 324, 122205.

[33]

Li, F.; Yan, P. Q.; Herold, F.; Drochner, A.; Wang, H. H.; Cao, T. L.; Liu, W. J.; Dai, X. Y.; Zhang, B. S.; Etzold, B. J. M. et al. Oxygen assisted butanol conversion on bifunctional carbon nanotube catalysts: Activity of oxygen functionalities. Carbon 2020, 170, 580–588.

[34]

Qi, W.; Su, D. S. Metal-free carbon catalysts for oxidative dehydrogenation reactions. ACS Catal. 2014, 4, 3212–3218.

[35]

Guo, X. L.; Qi, W.; Liu, W.; Yan, P. Q.; Li, F.; Liang, C. H.; Su, D. S. Oxidative dehydrogenation on nanocarbon: Revealing the catalytic mechanism using model catalysts. ACS Catal. 2017, 7, 1424–1427.

[36]

Chen, X. H.; Shen, Q. J.; Li, Z. J.; Wan, W. H.; Chen, J. Z.; Zhang, J. Y. Metal-Free H2 activation for highly selective hydrogenation of nitroaromatics using phosphorus-doped carbon nanotubes. ACS Appl. Mater. Interfaces 2020, 12, 654–666.

[37]

He, S. M.; Huang, C. C.; Liou, J. W.; Woon, W. Y.; Su, C. Y. Spectroscopic and electrical characterizations of low-damage phosphorous-doped graphene via ion implantation. ACS Appl. Mater. Interfaces 2019, 11, 47289–47298.

[38]

Dai, X. Y.; Li, F.; Zhang, X. F.; Cao, T. L.; Lu, X. Y.; Qi, W. Oxidative dehydrogenation on nanocarbon: Polydopamine hollow nanospheres as novel highly efficient catalysts. FlatChem 2021, 25, 100220.

[39]

Liu, W.; Chen, B. X.; Duan, X. Z.; Wu, K. H.; Qi, W.; Guo, X. L.; Zhang, B. S.; Su, D. S. Molybdenum carbide modified nanocarbon catalysts for alkane dehydrogenation reactions. ACS Catal. 2017, 7, 5820–5827.

Carbon Future
Article number: 9200012
Cite this article:
Dai X, Yan P, Bai Y, et al. Phosphorus modified onion-like carbon catalyzed methanol conversion to dimethoxymethane: The unique role of C–P species. Carbon Future, 2024, 1(2): 9200012. https://doi.org/10.26599/CF.2024.9200012

923

Views

194

Downloads

0

Crossref

Altmetrics

Received: 02 February 2024
Revised: 22 May 2024
Accepted: 27 May 2024
Published: 21 June 2024
© The Author(s) 2024.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See https://creativecommons.org/licenses/by/4.0/.

Return