AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (17 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

CO2 electroreduction to acetate by enhanced tandem effects of surface intermediate over Co3O4 supported polyaniline catalyst

Liwen Wang1Pengfei Liu2Jie Yang1Chenjia Liang1Changshun Deng1Yinxuan Zhao1Xuefeng Guo1Luming Peng1Nianhua Xue1Qiang Wang2( )Weiping Ding1 ( )
Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
Department of Applied Chemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211880, China
Show Author Information

Graphical Abstract

we report a heterogeneous catalyst with Co3O4 nanoparticles immobilized on polyaniline (PANI) and co-supported by highly graphitized carbon (Co3O4/PANI/C) for electroreduction of CO2 to acetate with high activity and selectivity. Its excellent performance is attributed to the tandem effects between the Co3O4 nanoparticles with abundant oxygen vacancy and the PANI heterogeneous interface in a favorable configuration.

Abstract

The electroreduction of CO2 to produce acetate is an extremely important and widely studied reaction. Herein, we report a heterogeneous electrocatalyst with Co3O4 nanoparticles immobilized on polyaniline (PANI) and cosupported by highly graphitized carbon (Co3O4/PANI/C) for the electroreduction of CO2 to acetate with high activity and selectivity. Remarkably enhanced acetate Faraday efficiency (ca. 62%) and current density (ca. 35 mA∙cm−2) were obtained under conditions of static electroreduction at −0.95 V in 0.5 M KOH aqueous electrolyte while suppressing the competitive hydrogen evolution reaction. The excellent performance of Co3O4/PANI/C is attributed to the tandem effect of the Co3O4 nanoparticles with abundant oxygen vacancies and the PANI heterogeneous interface in a favorable configuration. Density functional theory calculations revealed that the tandem configuration of Co3O4/PANI/C facilitates the rapid delivery of the key *CO intermediate formed on Co3O4 to PANI, which increases the coverage of the intermediate *CO on the electrocatalyst surface, thus promoting acetate production during the CO2 electroreduction reaction.

Electronic Supplementary Material

Download File(s)
0013_ESM.pdf (1.8 MB)

References

[1]

Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; Van De Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it. Joule 2018, 2, 825–832.

[2]

Yang, P. P.; Gao, M. R. Enrichment of reactants and intermediates for electrocatalytic CO2 reduction. Chem. Soc. Rev. 2023, 52, 4343–4380.

[3]

Xia, C.; Zhu, P.; Jiang, Q.; Pan, Y.; Liang, W. T.; Stavitski, E.; Alshareef, H. N.; Wang , H. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 2019, 4, 776–785.

[4]

Zeng, Z.P.; Gan, L. Y.; Yang, H. B.; Su, X. Z.; Gao, J. J.; Liu, W.; Matsumoto, H.; Gong, J.; Zhang, J. M.; Cai, W. Z. et al. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 2021, 12, 4088.

[5]

Vermaas, D. A.; Smith, W. A. Synergistic electrochemical CO2 reduction and water oxidation with a bipolar membrane. ACS Energy Lett. 2016, 1, 1143–1148.

[6]

Gao, D. F.; Arán-Ais, R. M.; Jeon, H. S.; Cuenya, B. R. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2019, 2, 198–210.

[7]

Han, N.; Wang, Y.; Ma, L.; Wen, J. G.; Li, J.; Zheng, H. C.; Nie, K. Q.; Wang, X. X.; Zhao, F. P.; Li, Y. F. et al. Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem 2017, 3, 652–664.

[8]

Wang, L. W.; Liu, P. F.; Xu, Y. D.; Zhao, Y. X.; Xue, N. H.; Guo, X. F.; Peng, L. M.; Zhu, Y.; Ding, M. N.; Wang, Q. et al. Enhanced catalytic activity and stability of bismuth nanosheets decorated by 3-aminopropyltriethoxysilane for efficient electrochemical reduction of CO2. Appl. Catal. B: Environ. 2021, 298, 120602.

[9]

Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 2014, 136, 14107–14113.

[10]

Ren, S. X.; Joulié, D.; Salvatore, D.; Torbensen, K.; Wang, M.; Robert, M.; Berlinguette, C. P. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 2019, 365, 367–369.

[11]

Wang, L. W.; Xu, Y. D.; Chen, T.; Wei, D. L.; Guo, X. F.; Peng, L. M.; Xue, N. H.; Zhu, Y.; Ding, M. N.; Ding, W. P. Ternary heterostructural CoO/CN/Ni catalyst for promoted CO2 electroreduction to methanol. J. Catal. 2021, 393, 83–91.

[12]

Boutin, E.; Wang, M.; Lin, J. C.; Mesnage, M.; Mendoza, D.; Lassalle-Kaiser, B.; Hahn, C.; Jaramillo, T. F.; Robert, M. Aqueous electrochemical reduction of carbon dioxide and carbon monoxide into methanol with cobalt phthalocyanine. Angew. Chem., Int. Ed. 2019, 58, 16172–16176.

[13]

Huang, J. Z.; Guo, X. R.; Yue, G. Q.; Hu, Q.; Wang, L. S. Boosting CH3OH production in electrocatalytic CO2 reduction over partially oxidized 5 nm cobalt nanoparticles dispersed on single-layer nitrogen-doped graphene. ACS Appl. Mater. Interfaces 2018, 10, 44403–44414.

[14]

Wang, Y. H.; Wang, Z. Y.; Dinh, C. T.; Li, J.; Ozden, A.; Kibria, M. G.; Seifitokaldani, A.; Tan, C. S.; Gabardo, C. M.; Luo, M. C. et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 2020, 3, 98–106.

[15]

Gentekos, D. T.; Fors, B. P. Molecular weight distribution shape as a versatile approach to tailoring block copolymer phase behavior. ACS Macro Lett. 2018, 7, 677–682.

[16]

Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X. Y.; Bell, D. C.; Nørskov, J. K.; Chan, K.; Wang, H. T. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 2018, 1, 111–119.

[17]

Song, Y. F.; Chen, W.; Zhao, C. C.; Li, S. G.; Wei, W.; Sun, Y. H. Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol. Angew. Chem. 2017, 129, 10980–10984.

[18]

Li, F. W.; Li, Y. C.; Wang, Z. Y.; Li, J.; Nam, D. H.; Lum, Y.; Luo, M. C.; Wang, X.; Ozden, A.; Hung, S. F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule-metal catalyst interfaces. Nat. Catal. 2020, 3, 75–82.

[19]

Wang, X.; Ou, P. F.; Wicks, J.; Xie, Y.; Wang, Y.; Li, J.; Tam, J.; Ren, D.; Howe, J. Y.; Wang, Z. Y. et al. Gold-in-copper at low *CO coverage enables efficient electromethanation of CO2. Nat. Commun. 2021, 12, 3387.

[20]

Huang, J. E.; Li, F. W.; Ozden, A.; Rasouli, A. S.; De Arquer, F. P. G.; Liu, S. J.; Zhang, S. Z.; Luo, M. C.; Wang, X.; Lum, Y. et al. CO2 electrolysis to multicarbon products in strong acid. Science 2021, 372, 1074–1078.

[21]

Liu, Y. M.; Chen, S.; Quan, X.; Yu, H. T. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 2015, 137, 11631–11636.

[22]

Song, Y. F.; Wang, S. B.; Chen, W.; Li, S. G.; Feng, G. H.; Wei, W.; Sun, Y. H. Enhanced ethanol production from CO2 electroreduction at micropores in nitrogen-doped mesoporous carbon. ChemSusChem 2020, 13, 293–297.

[23]

Wang, H. X.; Chen, Y. B.; Hou, X. L.; Ma, C. Y.; Tan, T. W. Nitrogen-doped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution. Green Chem. 2016, 18, 3250–3256.

[24]

Sharma, P. P.; Wu, J. J.; Yadav, R. M.; Liu, M. J.; Wright, C. J.; Tiwary, C. S.; Yakobson, B. I.; Lou, J.; Ajayan, P. M.; Zhou, X. D. Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2: On the understanding of defects, defect density, and selectivity. Angew. Chem., Int. Ed. 2015, 54, 13701–13705.

[25]

Wang, W.; Shang, L.; Chang, G. J.; Yan, C. Y.; Shi, R.; Zhao, Y. X.; Waterhouse, G. I. N.; Yang, D. J.; Zhang, T. R. Intrinsic carbon-defect-driven electrocatalytic reduction of carbon dioxide. Adv. Mater. 2019, 31, 1808276.

[26]

Köleli, F.; Röpke, T.; Hamann, C. H. The reduction of CO2 on polyaniline electrode in a membrane cell. Synth. Met. 2004, 140, 65–68.

[27]

Genovese, C.; Ampelli, C.; Perathoner, S.; Centi, G. Mechanism of C–C bond formation in the electrocatalytic reduction of CO2 to acetic acid. A challenging reaction to use renewable energy with chemistry. Green Chem. 2017, 19, 2406–2415.

[28]

Grace, A. N.; Choi, S. Y.; Vinoba, M.; Bhagiyalakshmi, M.; Chu, D. H.; Yoon, Y.; Nam, S. C.; Jeong, S. K. Electrochemical reduction of carbon dioxide at low overpotential on a polyaniline/Cu2O nanocomposite based electrode. Appl. Energy 2014, 120, 85–94.

[29]

Du, J.; Li, S. P.; Liu, S. L.; Xin, Y.; Chen, B. F.; Liu, H. Z.; Han, B. X. Selective electrochemical reduction of carbon dioxide to ethanol via a relay catalytic platform. Chem. Sci. 2020, 11, 5098–5104.

[30]

Li, F.; Thevenon, A.; Rosas-Hernández, A.; Wang, Z.; Li, Y.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y.; et al. Molecular tuning of CO2-to-ethylene conversion. Nature 2020, 577, 509–513.

[31]

Birdja, Y. Y.; Koper, M. T. M. The importance of cannizzaro-type reactions during electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 2017, 139, 2030–2034.

[32]

Yang, H. P.; Yu, X. Y.; Shao, J.; Liao, J. X.; Li, G. D.; Hu, Q.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X. In situ encapsulated and well dispersed Co3O4 nanoparticles as efficient and stable electrocatalysts for high-performance CO2 reduction. J. Mater. Chem. A 2020, 8, 15675–15680.

[33]

Ding, J.; Du, P.; Zhu, J.; Hu, Q.; He, D.; Wu, Y.; Liu, W.; Zhu, S.; Yan, W.; Hu, J.; et al. Light‐driven C–C coupling for targeted synthesis of CH3COOH with nearly 100% selectivity from CO2. Angew. Chem. Int. Ed. 2024., .

[34]

Sun, X. F.; Chen, C. J.; Liu, S. J.; Hong, S.; Zhu, Q. G.; Qian, Q. L.; Han, B. X.; Zhang, J.; Zheng, L. R. Aqueous CO2 reduction with high efficiency using α-Co(OH)2-supported atomic Ir electrocatalysts. Angew. Chem. 2019, 131, 4717–4721.

[35]

Chen, T.; Xu, Y. D.; Guo, S. Q.; Wei, D. L.; Peng, L. M.; Guo, X. F.; Xue, N. H.; Zhu, Y.; Chen, Z. X.; Zhao, B. et al. Ternary heterostructural Pt/CN x /Ni as a supercatalyst for Oxygen Reduction. iScience 2019, 11, 388–397.

[36]

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

[37]

Xie, X. W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 2009, 458, 746–749.

[38]

Mu, Y. K.; Ruan, C. H.; Li, P. X.; Xu, J.; Xie, Y. B. Enhancement of electrochemical performance of cobal(II) coordinated polyaniline: A combined experimental and theoretical study. Electrochim. Acta 2020, 338, 135881.

[39]

Giri, S.; Ghosh, D.; Das, C. K. In situ synthesis of cobalt doped polyaniline modified graphene composites for high performance supercapacitor electrode materials. J. Electroanal. Chem. 2013, 697, 32–45.

[40]

Wang, X. W.; Wang, F. X.; Wang, L. Y.; Li, M. X.; Wang, Y. F.; Chen, B. W.; Zhu, Y. S.; Fu, L. J.; Zha, L. S.; Zhang, L. X. et al. An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior. Adv. Mater. 2016, 28, 4904–4911.

[41]

Liu, Y.; Wei, J.; Yang, Z.; Zheng, L.; Zhao, J.; Song, Z.; Zhou, Y.; Cheng, J.; Meng, J.; Geng Z.; et al. Efficient tandem electroreduction of nitrate into ammonia through coupling Cu single atoms with adjacent Co3O4. Nat. Commun. 2024, 15, 3619.

[42]

Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277–5281.

[43]

Zhang, Q.; Musgrave, C. B.; Song, Y.; Su, J.; Huang, L.; Cheng, L.; Li, G.; Liu, Y.; Xin, Y.; Hu, Q.; et al. A covalent molecular design enabling efficient CO2 reduction in strong acids. Nat. Synth. 2024.

[44]

Calle-Vallejo, F.; Koper, M. T. M. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem., Int. Ed. 2013, 52, 7282–7285.

[45]

Li, C. W.; Ciston, J.; Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 2014, 508, 504–507.

[46]
Gao, S.; Jiao, X. C.; Sun, Z. T.; Zhang, W. H.; Sun, Y. F.; Wang, C. M.; Hu, Q. T.; Zu, X. L.; Yang, F.; Yang, S. Y. et al. Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate. Angew. Chem., Int. Ed. 2016 , 55, 698–702.
[47]
Wu, J. J.; Ma, S. C.; Sun, J.; Gold, J. I.; Tiwary, C. S.; Kim, B.; Zhu, L. Y.; Chopra, N.; Odeh, I. N.; Vajtai, R. et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 2016 , 7, 13869.
[48]

Nam, D. H.; De Luna, P.; Rosas-Hernández, A.; Thevenon, A.; Li, F.; Agapie, T.; Peters, J. C.; Shekhah, O.; Eddaoudi, M.; Sargent, E. H. Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 2020, 19, 266–276.

[49]

Wang, D. W.; Su, D. S. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 576–591.

[50]

Wang, L.; Nitopi, S.; Wong, A. B.; Snider, J. L.; Nielander, A. C.; Morales-Guio, C. G.; Orazov, M.; Higgins, D. C.; Hahn, C.; Jaramillo T. F. Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. Nat. Catal. 2019, 2, 702–708.

[51]

Shi, R.; Guo, J. H.; Zhang, X. R.; Waterhouse, G. I. N.; Han, Z. J.; Zhao, Y. X.; Shang, L.; Zhou, C.; Jiang, L.; Zhang, T. R. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat. Commun. 2020, 11, 3028.

Carbon Future
Article number: 9200013
Cite this article:
Wang L, Liu P, Yang J, et al. CO2 electroreduction to acetate by enhanced tandem effects of surface intermediate over Co3O4 supported polyaniline catalyst. Carbon Future, 2024, 1(2): 9200013. https://doi.org/10.26599/CF.2024.9200013

674

Views

110

Downloads

0

Crossref

Altmetrics

Received: 24 March 2024
Revised: 15 May 2024
Accepted: 28 May 2024
Published: 09 July 2024
© The Author(s) 2024.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See https://creativecommons.org/licenses/by/4.0/.

Return