AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (14.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Effective electrochemical trichloroethylene removal from water enabled by selective molecular catalysis

Yuanzuo Gao1,2,#Wanyu Zhang1,2,3,#Chungseok Choi1,2Bo Shang1,2Seonjeong Cheon1,2Aidan Francis Meese3Jae-Hong Kim3Donghui Long4( )John Fortner3( )Hailiang Wang1,2( )
Department of Chemistry, Yale University, New Haven, CT 06520, USA
Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
Present address: SKKU Advanced Institute of Nanotechnology and Department of Nanoengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea

#Yuanzuo Gao and Wanyu Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

Catalytic electrodes based on cobalt phthalocyanine molecules supported on carbon nanomaterials are developed forefficient removal of trichloroethylene (TCE) from water and selective conversion into ethylene.

Abstract

Electrochemistry can provide a viable and sustainable way to treat water polluted by chlorinated volatile organic compounds. However, the removal and valorization of trichloroethylene (TCE) remains as a challenge due to the lack of suitable electrocatalysts with high selectivity and activity. We herein present a catalyst, comprising cobalt phthalocyanine (CoPc) molecules assembled onto multiwalled carbon nanotubes (CNTs), that can electrochemically decompose aqueously dissolved TCE into ethylene and chloride ions at record high rates with close to 100% Faradaic efficiency. Kinetics studies reveal that the rate-determining step is the first electron transfer without proton involvement. We further show that replacing the CNT support with reduced graphene oxide (rGO) can improve the TCE treatment efficacy because of the two-dimensional nanostructure of rGO and its stronger interaction with CoPc molecules. Incorporating the CoPc/rGO catalyst into an electrified membrane filtration device, we demonstrate 95% TCE removal from simulated water samples with environmentally relevant TCE and electrolyte concentrations.

Electronic Supplementary Material

Download File(s)
0015_ESM.pdf (1.6 MB)

References

[1]

Chheda, D.; Sorial, G. A. Evaluation of co-metabolic removal of trichloroethylene in a biotrickling filter under acidic conditions. J. Environ. Sci. 2017, 57, 54–61.

[2]

Den, W.; Ravindran, V.; Pirbazari, M. Photooxidation and biotrickling filtration for controlling industrial emissions of trichloroethylene and perchloroethylene. Chem. Eng. Sci. 2006, 61, 7909–7923.

[3]
TSCA and TRI Information for Trichloroethylene in the 2015 TRI National Analysis [Online].2015. https://19january2017snapshot.epa.gov/trinationalanalysis/example-tsca-and-tri-information-trichloroethylene-2015-tri-national-analysis_.html (accessed 2023).
[4]

Wu, Z. N.; Man, Q. L.; Niu, H. Y.; Lyu, H. H.; Song, H. K.; Li, R. J.; Ren, G. B.; Zhu, F. J.; Peng, C.; Li, B. H. et al. Recent advances and trends of trichloroethylene biodegradation: A critical review. Front. Microbiol. 2022, 13, 1053169.

[5]

Baskaran, D.; Rajamanickam, R. Aerobic biodegradation of trichloroethylene by consortium microorganism from turkey litter compost. J. Environ. Chem. Eng. 2019, 7, 103260.

[6]

Haest, P. J.; Springael, D.; Smolders, E. Dechlorination kinetics of TCE at toxic TCE concentrations: Assessment of different models. Water Res. 2010, 44, 331–339.

[7]

Rossabi, J.; Jackson, D. G.; Vermeulen, H. H.; Looney, B. B. Dense non-aqueous phase liquid chlorinated contaminant detected far from the source release area in an aquifer. Commun. Earth Environ. 2022, 3, 223.

[8]

Lee, P. K. H.; Warnecke, F.; Brodie, E. L.; Macbeth, T. W.; Conrad, M. E.; Andersen, G. L.; Alvarez-Cohen, L. Phylogenetic microarray analysis of a microbial community performing reductive dechlorination at a TCE-contaminated site. Environ. Sci. Technol. 2012, 46, 1044–1054.

[9]

Yamazaki, Y.; Kitamura, G.; Tian, X. W.; Suzuki, I.; Kobayashi, T.; Shimizu, T.; Inoue, D.; Ike, M. Temperature dependence of sequential chlorinated ethenes dechlorination and the dynamics of dechlorinating microorganisms. Chemosphere 2022, 287, 131989.

[10]

Moran, M. J.; Zogorski, J. S.; Squillace, P. J. Chlorinated solvents in groundwater of the United States. Environ. Sci. Technol. 2007, 41, 74–81.

[11]

Pecoraino, G.; Scalici, L.; Avellone, G.; Ceraulo, L.; Favara, R.; Candela, E. G.; Provenzano, M. C.; Scaletta, C. Distribution of volatile organic compounds in Sicilian groundwaters analysed by head space-solid phase micro extraction coupled with gas chromatography mass spectrometry (SPME/GC/MS). Water Res. 2008, 42, 3563–3577.

[12]
U.S. EPA. Appendix A to 40 CFR, Part 423-126 Priority Pollutants [Online] 1981. http://water.epa.gov/scitech/methods/cwa/pollutants.cfm (accessed 2023).
[13]

Huang, B. B.; Lei, C.; Wei, C. H.; Zeng, G. M. Chlorinated volatile organic compounds (Cl-VOCs) in environment-sources, potential human health impacts, and current remediation technologies. Environ. Int. 2014, 71, 118–138.

[14]

McCarty, P. L.; Criddle, C. S.; Vogel, T. M. Retrospective on microbial transformations of halogenated organics. Environ. Sci.: Processes Impacts 2020, 22, 512–517.

[15]

Lei, C.; Liang, F. Y.; Li, J.; Chen, W. Q.; Huang, B. B. Electrochemical reductive dechlorination of chlorinated volatile organic compounds (Cl-VOCs): Effects of molecular structure on the dehalogenation reactivity and mechanisms. Chem. Eng. J. 2019, 358, 1054–1064.

[16]

Scheutz, C.; Broholm, M. M.; Durant, N. D.; Weeth, E. B.; Jørgensen, T. H.; Dennis, P.; Jacobsen, C. S.; Cox, E. E.; Chambon, J. C.; Bjerg, P. L. Field evaluation of biological enhanced reductive dechlorination of chloroethenes in clayey till. Environ. Sci. Technol. 2010, 44, 5134–5141.

[17]

Pant, P.; Pant, S. A review: Advances in microbial remediation of trichloroethylene (TCE). J. Environ. Sci. 2010, 22, 116–126.

[18]

Tobiszewski, M.; Namieśnik, J. Abiotic degradation of chlorinated ethanes and ethenes in water. Environ. Sci. Pollut. Res. 2012, 19, 1994–2006.

[19]
United States Environmental Protection Agency. Fact sheet: National primary drinking water standards 1991, EPA 570/9-91-012FS.
[20]

Orth, W. S.; Gillham, R. W. Dechlorination of trichloroethene in aqueous solution using Fe0. Environ. Sci. Technol. 1995, 30, 66–71.

[21]

Liu, Y. Q.; Majetich, S. A.; Tilton, R. D.; Sholl, D. S.; Lowry, G. V. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ. Sci. Technol. 2005, 39, 1338–1345.

[22]

Gu, Y. W.; Wang, B. B.; He, F.; Bradley, M. J.; Tratnyek, P. G. Mechanochemically sulfidated microscale zero valent iron: Pathways, kinetics, mechanism, and efficiency of trichloroethylene dechlorination. Environ. Sci. Technol. 2017, 51, 12653–12662.

[23]

Burris, D. R.; Delcomyn, C. A.; Smith, M. H.; Roberts, A. L. Reductive dechlorination of tetrachloroethylene and trichloroethylene catalyzed by vitamin B12 in homogeneous and heterogeneous systems. Environ. Sci. Technol. 1996, 30, 3047–3052.

[24]

Mao, X. H.; Ciblak, A.; Baek, K.; Amiri, M.; Loch-Caruso, R.; Alshawabkeh, A. N. Optimization of electrochemical dechlorination of trichloroethylene in reducing electrolytes. Water Res. 2012, 46, 1847–1857.

[25]

Li, T.; Farrell, J. Reductive dechlorination of trichloroethene and carbon tetrachloride using iron and palladized-iron cathodes. Environ. Sci. Technol. 2000, 34, 173–179.

[26]

Deng, J.; Hu, X. M.; Gao, E. L.; Wu, F.; Yin, W. Z.; Huang, L. Z.; Dionysiou, D. D. Electrochemical reductive remediation of trichloroethylene contaminated groundwater using biomimetic iron-nitrogen-doped carbon. J. Hazard. Mater. 2021, 419, 126458.

[27]

Deng, J.; Zeng, X. B.; Wu, F.; Fang, Z.; Dai, Y. T.; Huang, L. Z. Coordinatively unsaturated reduced iron sites enable hemin-catalyzed electrochemical dechlorination of trichloroethylene. J. Environ. Eng. 2022, 148, 04022036.

[28]

Deng, J.; Fang, Z.; Dai, Y. T.; Huang, L. Z. Electrochemical dechlorination of trichloroethylene by manganese phthalocyanine: Performance and mechanisms. Strategic Plann. Energy Environ. 2023, 40, 437–454.

[29]

Shimakoshi, H.; Hisaeda, Y. Electrochemistry and catalytic properties of vitamin B12 derivatives in nonaqueous media. Curr. Opin. Electrochem. 2018, 8, 24–30.

[30]

Choi, C.; Wang, X. X.; Kwon, S.; Hart, J. L.; Rooney, C. L.; Harmon, N. J.; Sam, Q. P.; Cha, J. J.; Goddard III, W. A.; Elimelech, M. et al. Efficient electrocatalytic valorization of chlorinated organic water pollutant to ethylene. Nat. Nanotechnol. 2023, 18, 160–167.

[31]

Wu, Y. S.; Jiang, Z.; Lu, X.; Liang, Y. Y.; Wang, H. L. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 2019, 575, 639–642.

[32]

Zhang, X.; Wu, Z. S.; Zhang, X.; Li, L. W.; Li, Y. Y.; Xu, H. M.; Li, X. X.; Yu, X. L.; Zhang, Z. S.; Liang, Y. Y. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 2017, 8, 14675.

[33]

Fang, Y. H.; Liu, Z. P. Tafel kinetics of electrocatalytic reactions: From experiment to first-principles. ACS Catal. 2014, 4, 4364–4376.

[34]

Durante, C.; Isse, A. A.; Sandonà, G.; Gennaro, A. Electrochemical hydrodehalogenation of polychloromethanes at silver and carbon electrodes. Appl. Catal. B: Environ. 2009, 88, 479–489.

[35]

Chen, Z.; Jiang, S.; Kang, G.; Nguyen, D.; Schatz, G. C.; Van Duyne, R. P. Operando characterization of iron phthalocyanine deactivation during oxygen reduction reaction using electrochemical tip-enhanced raman spectroscopy. J. Am. Chem. Soc. 2019, 141, 15684–15692.

[36]

Nguyen, D.; Kang, G.; Chiang, N.; Chen, X.; Seideman, T.; Hersam, M. C.; Schatz, G. C.; Van Duyne, R. P. Probing molecular-scale catalytic interactions between oxygen and cobalt phthalocyanine using tip-enhanced raman spectroscopy. J. Am. Chem. Soc. 2018, 140, 5948–5954.

[37]

Wan, L. Y.; Zhao, K. M.; Wang, Y. C.; Wei, N.; Zhang, P. Y.; Yuan, J. Y.; Zhou, Z. Y.; Sun, S. G. Molecular degradation of iron phthalocyanine during the oxygen reduction reaction in acidic media. ACS Catal. 2022, 12, 11097–11107.

[38]

Capaldo, L.; Ravelli, D.; Fagnoni, M. Direct photocatalyzed hydrogen atom transfer (HAT) for aliphatic C–H bonds elaboration. Chem. Rev. 2022, 122, 1875–1924.

[39]

Meng, Y. F.; Gnanamani, E.; Zare, R. N. Direct C(sp3)–N bond formation between toluene and amine in water microdroplets. J. Am. Chem. Soc. 2022, 144, 19709–19713.

[40]

Shey, J.; van der Donk, W. A. Mechanistic studies on the vitamin B12-catalyzed dechlorination of chlorinated alkenes. J. Am. Chem. Soc. 2000, 122, 12403–12404.

[41]

Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

[42]

Huang, L.; Chen, J.; Gao, T. T.; Zhang, M.; Li, Y. R.; Dai, L. M.; Qu, L. T.; Shi, G. Q. Reduced graphene oxide membranes for ultrafast organic solvent nanofiltration. Adv. Mater. 2016, 28, 8669–8674.

[43]

Zhang, W. Y.; Xu, H.; Xie, F.; Ma, X. H.; Niu, B.; Chen, M. Q.; Zhang, H. Y.; Zhang, Y. Y.; Long, D. H. General synthesis of ultrafine metal oxide/reduced graphene oxide nanocomposites for ultrahigh-flux nanofiltration membrane. Nat. Commun. 2022, 13, 471.

[44]
European Union Risk Assessment Report [Online]. 2004. chrome-extension. https://echa.europa.eu/documents/10162/83f0c99f-f687-4cdf-a64b-514f1e26fdc0 (accessed 2022).
[45]

Sun, M.; Wang, X. X.; Winter, L. R.; Zhao, Y. M.; Ma, W.; Hedtke, T.; Kim, J. H.; Elimelech, M. Electrified membranes for water treatment applications. ACS EST Eng. 2021, 1, 725–752.

[46]

Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73.

[47]

Koenig, S. P.; Wang, L. D.; Pellegrino, J.; Bunch, J. S. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 2012, 7, 728–732.

[48]

Rana, D.; Matsuura, T. Surface modifications for antifouling membranes. Chem. Rev. 2010, 110, 2448–2471.

[49]

Shen, Y. X.; Badireddy, A. R. A critical review on electric field-assisted membrane processes: Implications for fouling control, water recovery, and future prospects. Membranes (Basel) 2021, 11, 820.

[50]
Essalhi, M.; Khayet, M. Chapter Three-membrane distillation (MD). In Progress in Filtration and Separation. Tarleton, S., Ed.; Academic Press: London, 2015; pp 61–99.
Carbon Future
Article number: 9200015
Cite this article:
Gao Y, Zhang W, Choi C, et al. Effective electrochemical trichloroethylene removal from water enabled by selective molecular catalysis. Carbon Future, 2024, 1(3): 9200015. https://doi.org/10.26599/CF.2024.9200015

1184

Views

458

Downloads

3

Crossref

Altmetrics

Received: 31 May 2024
Revised: 18 July 2024
Accepted: 02 August 2024
Published: 05 September 2024
© The Author(s) 2024.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See https://creativecommons.org/licenses/by/4.0/.

Return