Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Electrochemistry can provide a viable and sustainable way to treat water polluted by chlorinated volatile organic compounds. However, the removal and valorization of trichloroethylene (TCE) remains as a challenge due to the lack of suitable electrocatalysts with high selectivity and activity. We herein present a catalyst, comprising cobalt phthalocyanine (CoPc) molecules assembled onto multiwalled carbon nanotubes (CNTs), that can electrochemically decompose aqueously dissolved TCE into ethylene and chloride ions at record high rates with close to 100% Faradaic efficiency. Kinetics studies reveal that the rate-determining step is the first electron transfer without proton involvement. We further show that replacing the CNT support with reduced graphene oxide (rGO) can improve the TCE treatment efficacy because of the two-dimensional nanostructure of rGO and its stronger interaction with CoPc molecules. Incorporating the CoPc/rGO catalyst into an electrified membrane filtration device, we demonstrate 95% TCE removal from simulated water samples with environmentally relevant TCE and electrolyte concentrations.
Chheda, D.; Sorial, G. A. Evaluation of co-metabolic removal of trichloroethylene in a biotrickling filter under acidic conditions. J. Environ. Sci. 2017, 57, 54–61.
Den, W.; Ravindran, V.; Pirbazari, M. Photooxidation and biotrickling filtration for controlling industrial emissions of trichloroethylene and perchloroethylene. Chem. Eng. Sci. 2006, 61, 7909–7923.
Wu, Z. N.; Man, Q. L.; Niu, H. Y.; Lyu, H. H.; Song, H. K.; Li, R. J.; Ren, G. B.; Zhu, F. J.; Peng, C.; Li, B. H. et al. Recent advances and trends of trichloroethylene biodegradation: A critical review. Front. Microbiol. 2022, 13, 1053169.
Baskaran, D.; Rajamanickam, R. Aerobic biodegradation of trichloroethylene by consortium microorganism from turkey litter compost. J. Environ. Chem. Eng. 2019, 7, 103260.
Haest, P. J.; Springael, D.; Smolders, E. Dechlorination kinetics of TCE at toxic TCE concentrations: Assessment of different models. Water Res. 2010, 44, 331–339.
Rossabi, J.; Jackson, D. G.; Vermeulen, H. H.; Looney, B. B. Dense non-aqueous phase liquid chlorinated contaminant detected far from the source release area in an aquifer. Commun. Earth Environ. 2022, 3, 223.
Lee, P. K. H.; Warnecke, F.; Brodie, E. L.; Macbeth, T. W.; Conrad, M. E.; Andersen, G. L.; Alvarez-Cohen, L. Phylogenetic microarray analysis of a microbial community performing reductive dechlorination at a TCE-contaminated site. Environ. Sci. Technol. 2012, 46, 1044–1054.
Yamazaki, Y.; Kitamura, G.; Tian, X. W.; Suzuki, I.; Kobayashi, T.; Shimizu, T.; Inoue, D.; Ike, M. Temperature dependence of sequential chlorinated ethenes dechlorination and the dynamics of dechlorinating microorganisms. Chemosphere 2022, 287, 131989.
Moran, M. J.; Zogorski, J. S.; Squillace, P. J. Chlorinated solvents in groundwater of the United States. Environ. Sci. Technol. 2007, 41, 74–81.
Pecoraino, G.; Scalici, L.; Avellone, G.; Ceraulo, L.; Favara, R.; Candela, E. G.; Provenzano, M. C.; Scaletta, C. Distribution of volatile organic compounds in Sicilian groundwaters analysed by head space-solid phase micro extraction coupled with gas chromatography mass spectrometry (SPME/GC/MS). Water Res. 2008, 42, 3563–3577.
Huang, B. B.; Lei, C.; Wei, C. H.; Zeng, G. M. Chlorinated volatile organic compounds (Cl-VOCs) in environment-sources, potential human health impacts, and current remediation technologies. Environ. Int. 2014, 71, 118–138.
McCarty, P. L.; Criddle, C. S.; Vogel, T. M. Retrospective on microbial transformations of halogenated organics. Environ. Sci.: Processes Impacts 2020, 22, 512–517.
Lei, C.; Liang, F. Y.; Li, J.; Chen, W. Q.; Huang, B. B. Electrochemical reductive dechlorination of chlorinated volatile organic compounds (Cl-VOCs): Effects of molecular structure on the dehalogenation reactivity and mechanisms. Chem. Eng. J. 2019, 358, 1054–1064.
Scheutz, C.; Broholm, M. M.; Durant, N. D.; Weeth, E. B.; Jørgensen, T. H.; Dennis, P.; Jacobsen, C. S.; Cox, E. E.; Chambon, J. C.; Bjerg, P. L. Field evaluation of biological enhanced reductive dechlorination of chloroethenes in clayey till. Environ. Sci. Technol. 2010, 44, 5134–5141.
Pant, P.; Pant, S. A review: Advances in microbial remediation of trichloroethylene (TCE). J. Environ. Sci. 2010, 22, 116–126.
Tobiszewski, M.; Namieśnik, J. Abiotic degradation of chlorinated ethanes and ethenes in water. Environ. Sci. Pollut. Res. 2012, 19, 1994–2006.
Orth, W. S.; Gillham, R. W. Dechlorination of trichloroethene in aqueous solution using Fe0. Environ. Sci. Technol. 1995, 30, 66–71.
Liu, Y. Q.; Majetich, S. A.; Tilton, R. D.; Sholl, D. S.; Lowry, G. V. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ. Sci. Technol. 2005, 39, 1338–1345.
Gu, Y. W.; Wang, B. B.; He, F.; Bradley, M. J.; Tratnyek, P. G. Mechanochemically sulfidated microscale zero valent iron: Pathways, kinetics, mechanism, and efficiency of trichloroethylene dechlorination. Environ. Sci. Technol. 2017, 51, 12653–12662.
Burris, D. R.; Delcomyn, C. A.; Smith, M. H.; Roberts, A. L. Reductive dechlorination of tetrachloroethylene and trichloroethylene catalyzed by vitamin B12 in homogeneous and heterogeneous systems. Environ. Sci. Technol. 1996, 30, 3047–3052.
Mao, X. H.; Ciblak, A.; Baek, K.; Amiri, M.; Loch-Caruso, R.; Alshawabkeh, A. N. Optimization of electrochemical dechlorination of trichloroethylene in reducing electrolytes. Water Res. 2012, 46, 1847–1857.
Li, T.; Farrell, J. Reductive dechlorination of trichloroethene and carbon tetrachloride using iron and palladized-iron cathodes. Environ. Sci. Technol. 2000, 34, 173–179.
Deng, J.; Hu, X. M.; Gao, E. L.; Wu, F.; Yin, W. Z.; Huang, L. Z.; Dionysiou, D. D. Electrochemical reductive remediation of trichloroethylene contaminated groundwater using biomimetic iron-nitrogen-doped carbon. J. Hazard. Mater. 2021, 419, 126458.
Deng, J.; Zeng, X. B.; Wu, F.; Fang, Z.; Dai, Y. T.; Huang, L. Z. Coordinatively unsaturated reduced iron sites enable hemin-catalyzed electrochemical dechlorination of trichloroethylene. J. Environ. Eng. 2022, 148, 04022036.
Deng, J.; Fang, Z.; Dai, Y. T.; Huang, L. Z. Electrochemical dechlorination of trichloroethylene by manganese phthalocyanine: Performance and mechanisms. Strategic Plann. Energy Environ. 2023, 40, 437–454.
Shimakoshi, H.; Hisaeda, Y. Electrochemistry and catalytic properties of vitamin B12 derivatives in nonaqueous media. Curr. Opin. Electrochem. 2018, 8, 24–30.
Choi, C.; Wang, X. X.; Kwon, S.; Hart, J. L.; Rooney, C. L.; Harmon, N. J.; Sam, Q. P.; Cha, J. J.; Goddard III, W. A.; Elimelech, M. et al. Efficient electrocatalytic valorization of chlorinated organic water pollutant to ethylene. Nat. Nanotechnol. 2023, 18, 160–167.
Wu, Y. S.; Jiang, Z.; Lu, X.; Liang, Y. Y.; Wang, H. L. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 2019, 575, 639–642.
Zhang, X.; Wu, Z. S.; Zhang, X.; Li, L. W.; Li, Y. Y.; Xu, H. M.; Li, X. X.; Yu, X. L.; Zhang, Z. S.; Liang, Y. Y. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 2017, 8, 14675.
Fang, Y. H.; Liu, Z. P. Tafel kinetics of electrocatalytic reactions: From experiment to first-principles. ACS Catal. 2014, 4, 4364–4376.
Durante, C.; Isse, A. A.; Sandonà, G.; Gennaro, A. Electrochemical hydrodehalogenation of polychloromethanes at silver and carbon electrodes. Appl. Catal. B: Environ. 2009, 88, 479–489.
Chen, Z.; Jiang, S.; Kang, G.; Nguyen, D.; Schatz, G. C.; Van Duyne, R. P. Operando characterization of iron phthalocyanine deactivation during oxygen reduction reaction using electrochemical tip-enhanced raman spectroscopy. J. Am. Chem. Soc. 2019, 141, 15684–15692.
Nguyen, D.; Kang, G.; Chiang, N.; Chen, X.; Seideman, T.; Hersam, M. C.; Schatz, G. C.; Van Duyne, R. P. Probing molecular-scale catalytic interactions between oxygen and cobalt phthalocyanine using tip-enhanced raman spectroscopy. J. Am. Chem. Soc. 2018, 140, 5948–5954.
Wan, L. Y.; Zhao, K. M.; Wang, Y. C.; Wei, N.; Zhang, P. Y.; Yuan, J. Y.; Zhou, Z. Y.; Sun, S. G. Molecular degradation of iron phthalocyanine during the oxygen reduction reaction in acidic media. ACS Catal. 2022, 12, 11097–11107.
Capaldo, L.; Ravelli, D.; Fagnoni, M. Direct photocatalyzed hydrogen atom transfer (HAT) for aliphatic C–H bonds elaboration. Chem. Rev. 2022, 122, 1875–1924.
Meng, Y. F.; Gnanamani, E.; Zare, R. N. Direct C(sp3)–N bond formation between toluene and amine in water microdroplets. J. Am. Chem. Soc. 2022, 144, 19709–19713.
Shey, J.; van der Donk, W. A. Mechanistic studies on the vitamin B12-catalyzed dechlorination of chlorinated alkenes. J. Am. Chem. Soc. 2000, 122, 12403–12404.
Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.
Huang, L.; Chen, J.; Gao, T. T.; Zhang, M.; Li, Y. R.; Dai, L. M.; Qu, L. T.; Shi, G. Q. Reduced graphene oxide membranes for ultrafast organic solvent nanofiltration. Adv. Mater. 2016, 28, 8669–8674.
Zhang, W. Y.; Xu, H.; Xie, F.; Ma, X. H.; Niu, B.; Chen, M. Q.; Zhang, H. Y.; Zhang, Y. Y.; Long, D. H. General synthesis of ultrafine metal oxide/reduced graphene oxide nanocomposites for ultrahigh-flux nanofiltration membrane. Nat. Commun. 2022, 13, 471.
Sun, M.; Wang, X. X.; Winter, L. R.; Zhao, Y. M.; Ma, W.; Hedtke, T.; Kim, J. H.; Elimelech, M. Electrified membranes for water treatment applications. ACS EST Eng. 2021, 1, 725–752.
Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73.
Koenig, S. P.; Wang, L. D.; Pellegrino, J.; Bunch, J. S. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 2012, 7, 728–732.
Rana, D.; Matsuura, T. Surface modifications for antifouling membranes. Chem. Rev. 2010, 110, 2448–2471.
Shen, Y. X.; Badireddy, A. R. A critical review on electric field-assisted membrane processes: Implications for fouling control, water recovery, and future prospects. Membranes (Basel) 2021, 11, 820.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See https://creativecommons.org/licenses/by/4.0/.