AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (62.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access | Online First

Carbon-based material for CO2 catalytic conversion applications

Wenhang Wang1,2Yang Wang2( )Xiangjin Kong1( )Hui Ning2Mingbo Wu2 ( )
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
Show Author Information

Graphical Abstract

Abstract

Carbon dioxide (CO2) is not only a greenhouse gas but also an abundant carbon resource. CO2 hydrogenation from electrocatalysis and thermocatalysis to high-value-added chemicals has attracted wide attention. The development of a catalyst was critical in the reaction, and the key is the innovation of its synthesis strategy. Carbon materials are widely used in CO2 hydrogenation because of their unique physical and chemical properties. Carbon species could play many roles during catalyst preparation and reaction, not only as bulk catalysts but also as structure modifiers of catalyst, support of catalyst, and electronic regulator of catalyst. In this review, the developmental strategy of catalysts by using a carbon species-assisted method in our research group was summarized, which can be applied to CO2 thermochemical and electrochemical hydrogenation. This review aims to provide insights into CO2 hydrogenation through the design of carbon-based catalysts.

References

[1]

He, M. Y.; Sun, Y. H.; Han, B. X. Green carbon science: Efficient carbon resource processing, utilization, and recycling towards carbon neutrality. Angew. Chem., Int. Ed. 2022, 61, e202112835.

[2]

Wang, W. H.; Zeng, C. Y.; Tsubaki, N. Recent advancements and perspectives of the CO2 hydrogenation reaction. Green Carbon 2023, 1, 133–145.

[3]
Ritchie, H.; Rosado, P.; Roser, M. CO 2 and Greenhouse Gas Emissions [Online]. Our World in Data, 2023. https://ourworldindata.org/co2-and-greenhouse-gas-emissions (accessed Jan 5, 2024).
[4]

Chen, J.; Duan, L. B.; Sun, Z. K. Review on the development of sorbents for calcium looping. Energy Fuels 2020, 34, 7806–7836.

[5]

Wang, X. W.; Wu, D.; Kang, X. M.; Zhang, J. J.; Fu, X. Z.; Luo, J. L. Densely packed ultrafine SnO2 nanoparticles grown on carbon cloth for selective CO2 reduction to formate. J. Energy Chem. 2022, 71, 159–166.

[6]

Wang, Z. T.; Qi, R. J.; Liu, D. Y.; Zhao, X. D.; Huang, L.; Chen, S. H.; Chen, Z. Q.; Li, M. T.; You, B.; Pang, Y. J. et al. Exfoliated ultrathin ZnIn2S4 nanosheets with abundant zinc vacancies for enhanced CO2 electroreduction to formate. ChemSusChem 2021, 14, 852–859.

[7]

Pan, B. B.; Yuan, G. T.; Zhao, X.; Han, N.; Huang, Y.; Feng, K.; Cheng, C.; Zhong, J.; Zhang, L.; Wang, Y. H. et al. Highly dispersed indium oxide nanoparticles supported on carbon nanorods enabling efficient electrochemical CO2 reduction. Small Sci. 2021, 1, 2100029.

[8]

Chen, Z. P.; Yu, G.; Li, B.; Zhang, X. X.; Jiao, M. Y.; Wang, N. L.; Zhang, X. P.; Liu, L. C. In situ carbon encapsulation confined nickel-doped indium oxide nanocrystals for boosting CO2 electroreduction to the industrial level. ACS Catal. 2021, 11, 14596–14604.

[9]

Cai, Z. Z.; Cao, N.; Zhang, F. X.; Lv, X. Z.; Wang, K.; He, Y.; Shi, Y.; Bin Wu, H.; Xie, P. F. Hierarchical Ag-Cu interfaces promote C–C coupling in tandem CO2 electroreduction. Appl. Catal. B: Environ. 2023, 325, 122310.

[10]

Zhou, Y. S.; Martín, A. J.; Dattila, F.; Xi, S. B.; López, N.; Pérez-Ramírez, J.; Yeo, B. S. Long-chain hydrocarbons by CO2 electroreduction using polarized nickel catalysts. Nat. Catal. 2022, 5, 545–554.

[11]

Wang, Y.; Sun, J.; Tsubaki, N. Clever nanomaterials fabrication techniques encounter sustainable C1 catalysis. Acc. Chem. Res. 2023, 56, 2341–2353.

[12]

Cannizzaro, F.; Hensen, E. J. M.; Filot, I. A. W. The promoting role of Ni on In2O3 for CO2 hydrogenation to methanol. ACS Catal. 2023, 13, 1875–1892.

[13]

Alamer, A. M.; Ouyang, M. Y.; Alshafei, F. H.; Nadeem, M. A.; Alsalik, Y.; Miller, J. T.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H.; Manousiouthakis, V.; Eagan, N. M. Design of dilute palladium-indium alloy catalysts for the selective hydrogenation of CO2 to methanol. ACS Catal. 2023, 13, 9987–9996.

[14]

Zhu, J.; Wang, P.; Zhang, X. B.; Zhang, G. H.; Li, R. T.; Li, W. H.; Senftle, T. P.; Liu, W.; Wang, J. Y.; Wang, Y. L. et al. Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO2 hydrogenation. Sci. Adv. 2022, 8, eabm3629.

[15]

Zhao, H. B.; Yu, R. F.; Ma, S. C.; Xu, K. Z.; Chen, Y.; Jiang, K.; Fang, Y.; Zhu, C. X.; Liu, X. C.; Tang, Y. et al. The role of Cu1–O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation. Nat. Catal. 2022, 5, 818–831.

[16]

Zhang, X. Q.; Kirilin, A. V.; Rozeveld, S.; Kang, J. H.; Pollefeyt, G.; Yancey, D. F.; Chojecki, A.; Vanchura, B.; Blum, M. Support effect and surface reconstruction in In2O3/ m-ZrO2 catalyzed CO2 hydrogenation. ACS Catal. 2022, 12, 3868–3880.

[17]

Liang, J. M.; Guo, L. S.; Gao, W. Z.; Wang, C. W.; Guo, X. Y.; He, Y. L.; Yang, G. H.; Tsubaki, N. Direct conversion of CO2 to aromatics over K-Zn-Fe/ZSM-5 catalysts via a Fischer–Tropsch synthesis pathway. Ind. Eng. Chem. Res. 2022, 61, 10336–10346.

[18]

Guo, L. S.; Sun, S.; Li, J.; Gao, W. Z.; Zhao, H.; Zhang, B. Z.; He, Y. L.; Zhang, P. P.; Yang, G. H.; Tsubaki, N. Boosting liquid hydrocarbons selectivity from CO2 hydrogenation by facilely tailoring surface acid properties of zeolite via a modified Fischer-Tropsch synthesis. Fuel 2021, 306, 121684.

[19]

Gao, X. H.; Atchimarungsri, T.; Ma, Q. X.; Zhao, T. S.; Tsubaki, N. Realizing efficient carbon dioxide hydrogenation to liquid hydrocarbons by tandem catalysis design. EnergyChem 2020, 2, 100038.

[20]

Wang, W. H.; Huo, K. X.; Wang, Y.; Xie, J. H.; Sun, X.; He, Y. L.; Li, M.; Liang, J.; Gao, X. H.; Yang, G. H. et al. Rational control of oxygen vacancy density in In2O3 to boost methanol synthesis from CO2 hydrogenation. ACS Catal. 2024, 14, 9887–9900.

[21]

Chen, F.; Liang, J. M.; Wang, F.; Guo, X. Y.; Gao, W. Z.; Kugue, Y.; He, Y. L.; Yang, G. H.; Reubroycharoen, P.; Vitidsant, T. et al. Improved catalytic activity and stability of Cu/ZnO catalyst by boron oxide modification for low-temperature methanol synthesis. Chem. Eng. J. 2023, 458, 141401.

[22]

Chen, F.; Gao, W. Z.; Wang, K. Z.; Wang, C. W.; Wu, X. M.; Liu, N.; Guo, X. Y.; He, Y. L.; Zhang, P. P.; Yang, G. H. et al. Enhanced performance and stability of Cu/ZnO catalyst by introducing MgO for low-temperature methanol synthesis using methanol itself as catalytic promoter. Fuel 2022, 315, 123272.

[23]

Zhong, J. W.; Yang, X. F.; Wu, Z. L.; Liang, B. L.; Huang, Y. Q.; Zhang, T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem. Soc. Rev. 2020, 49, 1385–1413.

[24]

Wang, Z. T.; Zhou, Y. S.; Liu, D. Y.; Qi, R. J.; Xia, C. F.; Li, M. T.; You, B.; Xia, B. Y. Carbon-confined indium oxides for efficient carbon dioxide reduction in a solid-state electrolyte flow cell. Angew. Chem., Int. Ed. 2022, 61, e202200552.

[25]

Yang, W. F.; Zhao, Y.; Chen, S.; Ren, W. H.; Chen, X. J.; Jia, C.; Su, Z.; Wang, Y.; Zhao, C. Defective indium/indium oxide heterostructures for highly selective carbon dioxide electrocatalysis. Inorg. Chem. 2020, 59, 12437–12444.

[26]

Lee, K.; Yan, H.; Sun, Q. M.; Zhang, Z. H.; Yan, N. Mechanism-guided catalyst design for CO2 hydrogenation to formate and methanol. Acc. Mater. Res. 2023, 4, 746–757.

[27]

Lee, K.; Mendes, P. C. D.; Jeon, H.; Song, Y. Z.; Dickieson, M. P.; Anjum, U.; Chen, L. W.; Yang, T. C.; Yang, C. M.; Choi, M. et al. Engineering nanoscale H supply chain to accelerate methanol synthesis on ZnZrO x . Nat. Commun. 2023, 14, 819.

[28]

Gong, K.; Wei, Y.; Lin, T. J.; Qi, X. Z.; Sun, F. F.; Jiang, Z.; Zhong, L. S. Maximizing the interface of dual active sites to enhance higher oxygenate synthesis from syngas with high activity. ACS Catal. 2023, 13, 4533–4543.

[29]

Cui, W. G.; Zhang, Q.; Zhou, L.; Wei, Z. C.; Yu, L.; Dai, J. J.; Zhang, H. B.; Hu, T. L. Hybrid MOF template-directed construction of hollow-structured In2O3@ZrO2 heterostructure for enhancing hydrogenation of CO2 to methanol. Small 2023, 19, 2204914.

[30]
Hydrogen Insights-A Perspective on Hydrogen Investment, Market Development and Cost Competitiveness; Hydrogen Council, 2021.
[31]
Green Hydrogen Cost Reduction: Scaling Up Electrolysers to Meet the 1.5 oC Climate Goal; International Renewable Energy Agency: Abu Dhabi, 2020.
[32]

Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it. Joule 2018, 2, 825–832.

[33]

Li, F. W.; MacFarlane, D. R.; Zhang, J. Recent advances in the nanoengineering of electrocatalysts for CO2 reduction. Nanoscale 2018, 10, 6235–6260.

[34]

Shih, C. F.; Zhang, T.; Li, J. H.; Bai, C. L. Powering the future with liquid sunshine. Joule 2018, 2, 1925–1949.

[35]

Li, X. D.; Sun, Y. F.; Xu, J. Q.; Shao, Y. J.; Wu, J.; Xu, X. L.; Pan, Y.; Ju, H. X.; Zhu, J. F.; Xie, Y. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 2019, 4, 690–699.

[36]

Zhou, W.; Cheng, K.; Kang, J. C.; Zhou, C.; Subramanian, V.; Zhang, Q. H.; Wang, Y. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem. Soc. Rev. 2019, 48, 3193–3228.

[37]

Yu, A.; Huang, Q.; Gao, S. X.; Xu, T. T.; Zhang, W.; Joshi, N.; Peng, P.; Yang, Y.; Li, F. F. Fullerene-metalloporphyrin co-crystal as efficient oxygen reduction reaction electrocatalyst precursor for Zn-air batteries. Carbon Future 2024, 1, 9200009.

[38]

Karapinar, D.; Huan, N. T.; Sahraie, N. R.; Li, J. K.; Wakerley, D.; Touati, N.; Zanna, S.; Taverna, D.; Tizei, L. H. G.; Zitolo, A. et al. Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: Selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem., Int. Ed. 2019, 58, 15098–15103.

[39]

Li, X. G.; Bi, W. T.; Chen, M. L.; Sun, Y. X.; Ju, H. X.; Yan, W. S.; Zhu, J. F.; Wu, X. J.; Chu, W. S.; Wu, C. Z. et al. Exclusive Ni–N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 2017, 139, 14889–14892.

[40]

Zhao, Q. S.; Liu, J. L.; Wang, Y. X.; Tian, W.; Liu, J. Y.; Zang, J. Z.; Ning, H.; Yang, C. H.; Wu, M. B. Novel in-situ redox synthesis of Fe3O4/rGO composites with superior electrochemical performance for lithium-ion batteries. Electrochim. Acta 2018, 262, 233–240.

[41]

Geng, W. J.; Li, W. X.; Liu, L.; Liu, J. H.; Liu, L. Y.; Kong, X. J. Facile assembly of Cu-Cu2O/N-reduced graphene oxide nanocomposites for efficient synthesis of 2-methylfuran. Fuel 2020, 259, 116267.

[42]

Ning, H.; Wang, W. H.; Mao, Q. H.; Zheng, S. R.; Yang, Z. X.; Zhao, Q. S.; Wu, M. B. Catalytic electroreduction of CO2 to C2H4 using Cu2O supported on 1-octyl-3-methylimidazole functionalized graphite sheets. Acta Phys. Chim. Sin. 2018, 34, 938–944.

[43]

Wang, J. L.; Liu, H.; Liu, Y.; Wang, W. H.; Sun, Q.; Wang, X. B.; Zhao, X. Y.; Hu, H.; Wu, M. B. Sulfur bridges between Co9S8 nanoparticles and carbon nanotubes enabling robust oxygen electrocatalysis. Carbon 2019, 144, 259–268.

[44]

Pan, F. P.; Zhao, H. L.; Deng, W.; Feng, X. H.; Li, Y. A novel N,Fe-decorated carbon nanotube/carbon nanosheet architecture for efficient CO2 reduction. Electrochim. Acta 2018, 273, 154–161.

[45]

Li, Y.; Li, D. W.; Rao, Y.; Zhao, X. B.; Wu, M. B. Superior CO2, CH4, and H2 uptakes over ultrahigh-surface-area carbon spheres prepared from sustainable biomass-derived char by CO2 activation. Carbon 2016, 105, 454–462.

[46]

Xie, J. F.; Zhao, X. T.; Wu, M. X.; Li, Q. H.; Wang, Y. B.; Yao, J. N. Metal-free fluorine-doped carbon electrocatalyst for CO2 reduction outcompeting hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 9640–9644.

[47]

Zhou, Q.; Jin, B.; Chen, J. J.; Xiao, Y. Y.; Chu, S. J.; Peng, R. F. Facile fabrication of Cu-doped carbon aerogels as catalysts for the thermal decomposition of ammonium perchlorate. Appl. Organomet. Chem. 2020, 34, e5700.

[48]

Cheng, Z. N.; Wang, Y.; Jin, D. K.; Liu, J. X.; Wang, W. H.; Gu, Y. Q.; Ni, W. X.; Feng, Z. X.; Wu, M. B. Petroleum pitch-derived porous carbon as a metal-free catalyst for direct propane dehydrogenation to propylene. Catal. Today 2023, 410, 164–174.

[49]

Shi, J. J.; Hu, X. M.; Madsen, M. R.; Lamagni, P.; Bjerglund, E. T.; Pedersen, S. U.; Skrydstrup, T.; Daasbjerg, K. Facile synthesis of iron- and nitrogen-doped porous carbon for selective CO2 electroreduction. ACS Appl. Nano Mater. 2018, 1, 3608–3615.

[50]

Song, Y. F.; Chen, W.; Zhao, C. C.; Li, S. G.; Wei, W.; Sun, Y. H. Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol. Angew. Chem., Int. Ed. 2017, 56, 10840–10844.

[51]

Tian, Y. M.; Fei, X.; Ning, H.; Wang, W. H.; Tan, X. J.; Wang, X. S.; Ma, Z. G.; Guo, Z. H.; Wu, M. B. Membrane-free electrocatalysis of CO2 to C2 on CuO/CeO2 nanocomposites. Front. Chem. 2022, 10, 915759.

[52]

Guo, D. L.; Wang, X. S.; Yang, Z. X.; Wang, W. H.; Ning, H.; Wu, M. B. Thermal driven high crystallinity of bismuth as robust catalyst for CO2 electroreduction to formate. ChemistrySelect 2021, 6, 1870–1873.

[53]

Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.

[54]

Wang, L. W.; Liu, P. F.; Yang, J.; Liang, C. J.; Deng, C. S.; Zhao, Y. X.; Guo, X. F.; Peng, L. M.; Xue, N. H.; Wang, Q. et al. CO2 electroreduction to acetate by enhanced tandem effects of surface intermediate over Co3O4 supported polyaniline catalyst. Carbon Future 2024, 1, 9200013.

[55]

Garg, S.; Biswas, A. N.; Chen, J. G. Opportunities for CO2 upgrading to C3 oxygenates using tandem electrocatalytic-thermocatalytic processes. Carbon Future 2024, 1, 9200002.

[56]

Tan, Z. H.; Peng, T. Y.; Tan, X. J.; Wang, W. H.; Wang, X. S.; Yang, Z. X.; Ning, H.; Zhao, Q. S.; Wu, M. B. Controllable synthesis of leaf-like cuo nanosheets for selective CO2 electroreduction to ethylene. ChemElectroChem 2020, 7, 2020–2025.

[57]

Ning, H.; Mao, Q. H.; Wang, W. H.; Yang, Z. X.; Wang, X. S.; Zhao, Q. S.; Song, Y.; Wu, M. B. N-doped reduced graphene oxide supported Cu2O nanocubes as high active catalyst for CO2 electroreduction to C2H4. J. Alloys Compd. 2019, 785, 7–12.

[58]

Wang, X. S.; Wang, W. H.; Zhang, J. Q.; Wang, H. Z.; Yang, Z. X.; Ning, H.; Zhu, J. X.; Zhang, Y. L.; Guan, L.; Teng, X. L. et al. Carbon sustained SnO2-Bi2O3 hollow nanofibers as Janus catalyst for high-efficiency CO2 electroreduction. Chem. Eng. J. 2021, 426, 131867.

[59]

Ning, H.; Guo, D. L.; Wang, X. S.; Tan, Z. H.; Wang, W. H.; Yang, Z. X.; Li, L. Q.; Zhao, Q. S.; Hao, J.; Wu, M. B. Efficient CO2 electroreduction over N-doped hieratically porous carbon derived from petroleum pitch. J. Energy Chem. 2021, 56, 113–120.

[60]

Wang, W. H.; Wang, X. S.; Ma, Z. G.; Wang, Y.; Yang, Z. X.; Zhu, J. X.; Lv, L.; Ning, H.; Tsubaki, N.; Wu, M. B. Carburized In2O3 nanorods endow CO2 electroreduction to formate at 1 A∙cm–2. ACS Catal. 2023, 13, 796–802.

[61]

Yan, S.; Peng, C.; Yang, C.; Chen, Y. S.; Zhang, J. B.; Guan, A. X.; Lv, X. M.; Wang, H. Z.; Wang, Z. Q.; Sham, T. K. et al. Electron localization and lattice strain induced by surface lithium doping enable ampere-level electrosynthesis of formate from CO2. Angew. Chem., Int. Ed. 2021, 60, 25741–25745.

[62]

Yang, Z. X.; Wang, H. Z.; Fei, X.; Wang, W. H.; Zhao, Y. Z.; Wang, X. S.; Tan, X. J.; Zhao, Q. S.; Wang, H. P.; Zhu, J. X. et al. MOF derived bimetallic CuBi catalysts with ultra-wide potential window for high-efficient electrochemical reduction of CO2 to formate. Appl. Catal. B: Environ. 2021, 298, 120571.

[63]

Yang, Z. X.; Wang, H. Z.; Bi, X. Z.; Tan, X. J.; Zhao, Y. Z.; Wang, W. H.; Zou, Y. C.; Wang, H. P.; Ning, H.; Wu, M. B. Bimetallic In2O3/Bi2O3 catalysts enable highly selective CO2 electroreduction to formate within ultra-broad potential windows. Energy Environ. Mater. 2024, 7, e12508.

[64]

Ning, H.; Fei, X.; Tan, Z. H.; Wang, W. H.; Yang, Z. X.; Wu, M. B. In situ-fabricated In2S3-reduced graphene oxide nanosheet composites for enhanced CO2 electroreduction to formate. ACS Appl. Nano Mater. 2022, 5, 2335–2342.

[65]

Xiao, C. L.; Zhang, J. Architectural design for enhanced C2 product selectivity in electrochemical CO2 reduction using Cu-based catalysts: A review. ACS Nano 2021, 15, 7975–8000.

[66]

Yang, Y.; Louisia, S.; Yu, S.; Jin, J. B.; Roh, I.; Chen, C. B.; Fonseca Guzman, M. V.; Feijóo, J.; Chen, P. C.; Wang, H. S. et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 2023, 614, 262–269.

[67]

Wang, W. H.; Ma, Z. G.; Fei, X.; Wang, X. S.; Yang, Z. X.; Wang, Y.; Zhang, J. Q.; Ning, H.; Tsubaki, N.; Wu, M. B. Joint tuning the morphology and oxygen vacancy of Cu2O by ionic liquid enables high-efficient CO2 reduction to C2 products. Chem. Eng. J. 2022, 436, 135029.

[68]

Wang, W. H.; Ning, H.; Yang, Z. X.; Feng, Z. X.; Wang, J. L.; Wang, X. S.; Mao, Q. H.; Wu, W. T.; Zhao, Q. S.; Hu, H. et al. Interface-induced controllable synthesis of Cu2O nanocubes for electroreduction CO2 to C2H4. Electrochim. Acta 2019, 306, 360–365.

[69]

Wang, W. H.; Ning, H.; Fei, X.; Wang, X. S.; Ma, Z. G.; Jiao, Z. M.; Wang, Y. N.; Tsubaki, N.; Wu, M. B. Trace ionic liquid-assisted orientational growth of Cu2O(110) facets promote CO2 electroreduction to C2 products. ChemSusChem 2023, 16, e202300418.

[70]

Hu, H.; Wu, M. B. Heavy oil-derived carbon for energy storage applications. J. Mater. Chem. A 2020, 8, 7066–7082.

[71]

Gao, C.; Feng, J. Z.; Dai, J. R.; Pan, Y. Y.; Zhu, Y. L.; Wang, W. H.; Dong, Y. F.; Cao, L. F.; Guan, L.; Pan, L. et al. Manipulation of interlayer spacing and surface charge of carbon nanosheets for robust lithium/sodium storage. Carbon 2019, 153, 372–380.

[72]

Pan, L.; Wang, Y. X.; Hu, H.; Li, X. X.; Liu, J. L.; Guan, L.; Tian, W.; Wang, X. B.; Li, Y. P.; Wu, M. B. 3D self-assembly synthesis of hierarchical porous carbon from petroleum asphalt for supercapacitors. Carbon 2018, 134, 345–353.

[73]

Ma, T. W.; Tan, X. J.; Zhao, Q. S.; Wu, Z. Z.; Cao, F. L.; Liu, J. Y.; Wu, X. C.; Liu, H.; Wang, X. B.; Ning, H. et al. Template-oriented synthesis of Fe–N-codoped graphene nanoshells derived from petroleum pitch for efficient nitroaromatics reduction. Ind. Eng. Chem. Res. 2020, 59, 129–136.

[74]

Wang, Y. X.; Tian, W.; Wang, L. H.; Zhang, H. R.; Liu, J. L.; Peng, T. Y.; Pan, L.; Wang, X. B.; Wu, M. B. A tunable molten-salt route for scalable synthesis of ultrathin amorphous carbon nanosheets as high-performance anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 5577–5585.

[75]

Ning, H.; Wang, X. S.; Wang, W. H.; Mao, Q. H.; Yang, Z. X.; Zhao, Q. S.; Song, Y.; Wu, M. B. Cubic Cu2O on nitrogen-doped carbon shells for electrocatalytic CO2 reduction to C2H4. Carbon 2019, 146, 218–223.

[76]

Ning, H.; Guo, Z. H.; Wang, W. H.; Wang, X. S.; Yang, Z. X.; Ma, Z. G.; Tian, Y. M.; Wu, C. H.; Hao, J.; Wu, M. B. Ammonia etched petroleum pitch-based porous carbon as efficient catalysts for CO2 electroreduction. Carbon Lett. 2022, 32, 807–814.

[77]

Wang, X. S.; Pan, Y. Y.; Ning, H.; Wang, H. M.; Guo, D. L.; Wang, W. H.; Yang, Z. X.; Zhao, Q. S.; Zhang, B. X.; Zheng, L. R. et al. Hierarchically micro- and meso-porous Fe-N4O-doped carbon as robust electrocatalyst for CO2 reduction. Appl. Catal. B: Environ. 2020, 266, 118630.

[78]

Zhao, H.; Zeng, C. Y.; Tsubaki, N. A mini review on recent advances in thermocatalytic hydrogenation of carbon dioxide to value-added chemicals and fuels. Resour. Chem. Mater. 2022, 1, 230–248.

[79]

Yang, Y. X.; Shen, C. Y.; Sun, K. H.; Mei, D. H.; Liu, C. J. Enhanced surface charge localization over nitrogen-doped In2O3 for CO2 hydrogenation to methanol with improved stability. ACS Catal. 2023, 13, 6154–6168.

[80]

Sun, K. H.; Shen, C. Y.; Zou, R.; Liu, C. J. Highly active Pt/In2O3-ZrO2 catalyst for CO2 hydrogenation to methanol with enhanced CO tolerance: The effects of ZrO2. Appl. Catal. B: Environ. 2023, 320, 122018.

[81]

Singh Malhi, H.; Zhang, Z. Z.; Shi, Y. L.; Gao, X. H.; Liu, W. Q.; Tu, W. F.; Han, Y. F. The promotional effects of carbon nanotube on Fe5C2-ZnO catalysts for CO2 hydrogenation to heavy olefins. Fuel 2023, 339, 127267.

[82]

Rui, N.; Wang, X. L.; Deng, K. X.; Moncada, J.; Rosales, R.; Zhang, F.; Xu, W. Q.; Waluyo, I.; Hunt, A.; Stavitski, E. et al. Atomic structural origin of the high methanol selectivity over In2O3-metal interfaces: Metal-support interactions and the formation of a InO x overlayer in Ru/In2O3 catalysts during CO2 hydrogenation. ACS Catal. 2023, 13, 3187–3200.

[83]

Rommens, K. T.; Saeys, M. Molecular views on fischer-tropsch synthesis. Chem. Rev. 2023, 123, 5798–5858.

[84]

Orege, J. I.; Wei, J.; Ge, Q. J.; Sun, J. Spinel-structured nanocatalysts: New opportunities for CO2 hydrogenation to value-added chemicals. Nano Today 2023, 51, 101914.

[85]

Wang, K. Z.; Oe, H.; Nakaji, Y.; Wang, Y.; Nakaji-Hirabayashi, T.; Tsubaki, N. Carbon-neutral butadiene rubber from CO2. Chem 2024, 10, 419–426.

[86]

Kuhn, A. N.; Park, R. C.; Yu, S. Y.; Gao, D.; Zhang, C.; Zhang, Y. H.; Yang, H. Valorization of carbon dioxide into C1 product via reverse water gas shift reaction using oxide-supported molybdenum carbides. Carbon Future 2024, 1, 9200011.

[87]

Tan, L.; Zhang, P. P.; Cui, Y.; Suzuki, Y.; Li, H. J.; Guo, L. S.; Yang, G. H.; Tsubaki, N. Direct CO2 hydrogenation to light olefins by suppressing CO by-product formation. Fuel Process. Technol. 2019, 196, 106174.

[88]

Liang, J. M.; Liu, J. T.; Guo, L. S.; Wang, W. H.; Wang, C. W.; Gao, W. Z.; Guo, X. Y.; He, Y. L.; Yang, G. H.; Yasuda, S. et al. CO2 hydrogenation over Fe-Co bimetallic catalysts with tunable selectivity through a graphene fencing approach. Nat. Commun. 2024, 15, 512.

[89]

Wang, Y.; Tan, L.; Tan, M. H.; Zhang, P. P.; Fang, Y.; Yoneyama, Y.; Yang, G. H.; Tsubaki, N. Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics. ACS Catal. 2019, 9, 895–901.

[90]

Zhang, L. J.; Gao, W. Z.; Wang, F.; Wang, C. W.; Liang, J. M.; Guo, X. Y.; He, Y. L.; Yang, G. H.; Tsubaki, N. Highly selective synthesis of light aromatics from CO2 by chromium-doped ZrO2 aerogels in tandem with HZSM-5@SiO2 catalyst. Appl. Catal. B: Environ. 2023, 328, 122535.

[91]

Gao, W. Z.; Guo, L. S.; Wu, Q. M.; Wang, C. W.; Guo, X. Y.; He, Y. L.; Zhang, P. P.; Yang, G. H.; Liu, G. B.; Wu, J. H. et al. Capsule-like zeolite catalyst fabricated by solvent-free strategy for para-xylene formation from CO2 hydrogenation. Appl. Catal. B: Environ. 2022, 303, 120906.

[92]

Hu, Q. F.; Wang, H. M.; Cui, C. J.; Qian, W. Z. “Redox switches” of Fe species on zeolite catalysts: Modulating the acidity and the para-xylene yield from methanol. Carbon Future 2024, 1, 9200001.

[93]

Chen, F.; Zhang, P. P.; Xiao, L. W.; Liang, J. M.; Zhang, B. Z.; Zhao, H.; Kosol, R.; Ma, Q. X.; Chen, J. N.; Peng, X. B. et al. Structure-performance correlations over Cu/ZnO interface for low-temperature methanol synthesis from syngas containing CO2. ACS Appl. Mater. Interfaces 2021, 13, 8191–8205.

[94]

Wang, J. Y.; Zhang, G. H.; Zhu, J.; Zhang, X. B.; Ding, F. S.; Zhang, A. F.; Guo, X. W.; Song, C. S. CO2 hydrogenation to methanol over In2O3-based catalysts: From mechanism to catalyst development. ACS Catal. 2021, 11, 1406–1423.

[95]

Zhang, S. N.; Huang, C. J.; Shao, Z. L.; Zhou, H. Z.; Chen, J. J.; Li, L.; Lu, J. W.; Liu, X. F.; Luo, H.; Xia, L. et al. Revealing and regulating the complex reaction mechanism of CO2 hydrogenation to higher alcohols on multifunctional tandem catalysts. ACS Catal. 2023, 13, 3055–3065.

[96]

Guo, L. S.; Gao, X. H.; Gao, W. Z.; Wu, H.; Wang, X. B.; Sun, S.; Wei, Y. X.; Kugue, Y.; Guo, X. Y.; Sun, J. et al. High-yield production of liquid fuels in CO2 hydrogenation on a zeolite-free Fe-based catalyst. Chem. Sci. 2023, 14, 171–178.

[97]
Zhao, H.; Guo, L. S.; Gao, W. Z.; Chen, F.; Wu, X. M.; Wang, K. Z.; He, Y. L.; Zhang, P. P.; Yang, G. H.; Tsubaki, N. Multi-promoters regulated iron catalyst with well-matching reverse water-gas shift and chain propagation for boosting CO2 hydrogenation. J. CO 2 Util. 2021 , 52, 101700.
[98]

Liu, N.; Wei, J.; Xu, J.; Yu, Y.; Yu, J. F.; Han, Y.; Wang, K.; Orege, J. I.; Ge, Q. J.; Sun, J. Elucidating the structural evolution of highly efficient Co–Fe bimetallic catalysts for the hydrogenation of CO2 into olefins. Appl. Catal. B: Environ. 2023, 328, 122476.

[99]

Zhang, L.; Dang, Y. R.; Zhou, X. H.; Gao, P.; Petrus van Bavel, A.; Wang, H.; Li, S. G.; Shi, L.; Yang, Y.; Vovk, E. I. et al. Direct conversion of CO2 to a jet fuel over CoFe alloy catalysts. Innovation 2021, 2, 100170.

[100]

Yao, B. Z.; Xiao, T. C.; Makgae, O. A.; Jie, X. Y.; Gonzalez-Cortes, S.; Guan, S. L.; Kirkland, A. I.; Dilworth, J. R.; Al-Megren, H. A.; Alshihri, S. M. et al. Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst. Nat. Commun. 2020, 11, 6395.

[101]

Kangvansura, P.; Chew, L. M.; Saengsui, W.; Santawaja, P.; Poo-arporn, Y.; Muhler, M.; Schulz, H.; Worayingyong, A. Product distribution of CO2 hydrogenation by K- and Mn-promoted Fe catalysts supported on N-functionalized carbon nanotubes. Catal. Today 2016, 275, 59–65.

[102]

Mihet, M.; Dan, M.; Lazar, M. D. CO2 hydrogenation catalyzed by graphene-based materials. Molecules 2022, 27, 3367.

[103]
Deerattrakul, V.; Dittanet, P.; Sawangphruk, M.; Kongkachuichay, P. CO2 hydrogenation to methanol using Cu-Zn catalyst supported on reduced graphene oxide nanosheets. J. CO 2 Util. 2016 , 16, 104–113.
[104]

Lin, S. Y.; Chen, Y. J.; Li, H. Y.; Wang, W. H.; Wang, Y.; Wu, M. B. Application of metal-organic frameworks and their derivates for thermal-catalytic C1 molecules conversion. iScience 2024, 27, 109656.

[105]

Wang, Y.; Kazumi, S.; Gao, W. Z.; Gao, X. H.; Li, H. J.; Guo, X. Y.; Yoneyama, Y.; Yang, G. H.; Tsubaki, N. Direct conversion of CO2 to aromatics with high yield via a modified Fischer–Tropsch synthesis pathway. Appl. Catal. B: Environ. 2020, 269, 118792.

[106]

Wang, Y.; Wang, K. Z.; Zhang, B. Z.; Peng, X. B.; Gao, X. H.; Yang, G. H.; Hu, H.; Wu, M. B.; Tsubaki, N. Direct conversion of CO2 to ethanol boosted by intimacy-sensitive multifunctional catalysts. ACS Catal. 2021, 11, 11742–11753.

[107]

Li, H. J.; Wang, L.; Xiao, F. S. Importance of zeolite in multifunctional catalysts for syngas conversion. Carbon Future 2024, 1, 9200003.

[108]

Wang, Y.; Wang, W. H.; He, R. S.; Li, M.; Zhang, J. Q.; Cao, F. L.; Liu, J. X.; Lin, S. Y.; Gao, X. H.; Yang, G. H. et al. Carbon-based electron buffer layer on ZnO x -Fe5C2-Fe3O4 boosts ethanol synthesis from CO2 hydrogenation. Angew. Chem., Int. Ed. 2023, 62, e202311786.

[109]

He, R. S.; Wang, Y.; Li, M.; Liu, J. X.; Gu, Y. Q.; Wang, W. H.; Liu, Q.; Tsubaki, N.; Wu, M. B. Tailoring the CO2 hydrogenation performance of Fe-based catalyst via unique confinement effect of the carbon shell. Chem. -Eur. J. 2023, 29, e202301918.

[110]

Wang, Y.; Lin, S. Y.; Li, M.; Zhu, C. Y.; Yang, H.; Dong, P.; Lu, M. J.; Wang, W. H.; Cao, J. L.; Liu, Q. et al. Boosting CO2 hydrogenation of Fe-based monolithic catalysts via 3D printing technology-induced heat/mass-transfer enhancements. Appl. Catal. B: Environ. 2024, 340, 123211.

Carbon Future
Cite this article:
Wang W, Wang Y, Kong X, et al. Carbon-based material for CO2 catalytic conversion applications. Carbon Future, 2024, https://doi.org/10.26599/CF.2024.9200016

384

Views

100

Downloads

0

Crossref

Altmetrics

Received: 26 June 2024
Revised: 03 August 2024
Accepted: 07 August 2024
Published: 10 September 2024
© The Author(s) 2024.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See https://creativecommons.org/licenses/by/4.0/.

Return