AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (32.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

The future of carbon anodes for lithium-ion batteries: The rational regulation of graphite interphase

Bin Cao1,2Mengjiao Du2Zirong Guo2Huan Liu2Chong Yan3Aibing Chen4Xiang Chen1,5Cheng Tang1,6 ( )Jia-Qi Huang3( )Qiang Zhang1,6,7,8 ( )
Tsinghua Center for Green Chemical Engineering Electrification, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066, Seoburo, Jangan-gu, Suwon 440-746, Republic of Korea
Institute for Carbon Neutrality, Tsinghua University, Beijing 100084, China
Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan 030032, China
Ordos Laboratory, Ordos 017010, China
Show Author Information

Graphical Abstract

Strategically regulating the graphite interphase can enhance the interfacial charge transfer kinetics,thereby contributing to the development of next-generation powerful Li-ion batteries.

Abstract

Interphase regulation of graphite anodes is indispensable for augmenting the performance of lithium-ion batteries (LIBs). The resulting solid electrolyte interphase (SEI) is crucial in ensuring anode stability, electrolyte compatibility, and efficient charge transfer kinetics, which in turn dictates the cyclability, fast-charging capability, temperature tolerance, and safety of carbon anodes. Continuous research endeavors are deepening our comprehension of the interphasial chemistry, underscoring the imperative to refine the SEI through economically viable and scalable techniques. The ongoing advancement of surface coating techniques involving amorphous carbons or Li-ion conductors, along with electrolyte formulations optimization such as the integration of film-forming additives, has become the cornerstones in regulating the SEI. These innovations are reshaping the landscape of current LIBs by refining the electrode interphase, paving the way to construct more potent and efficient energy storage systems. The relentless drive to optimize the interphase through cutting-edge technologies is central to the future of LIBs, with the ambitious goals of achieving higher energy densities, ensuring safety, and promoting sustainability in energy storage solutions. This review affords a comprehensive overview of the progression in carbon anode development and current status of their industrialization, underscoring the critical role of interphase regulation engineering in advancing the LIB technology.

References

[1]

Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. Li x CoO2 (0<x≤1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789.

[2]

Thackeray, M. M.; Johnson, P. J.; De Picciotto, L. A.; Bruce, P. G.; Goodenough, J. B. Electrochemical extraction of lithium from LiMn2O4. Mater. Res. Bull. 1984, 19, 179–187.

[3]

Yoshino, A. From polyacetylene to carbonaceous anodes. Nat. Energy 2021, 6, 449.

[4]

Zhang, H.; Yang, Y.; Ren, D. S.; Wang, L.; He, X. M. Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Mater. 2021, 36, 147–170.

[5]

Yazami, R.; Touzain, P. A reversible graphite-lithium negative electrode for electrochemical generators. J. Power Sources 1983, 9, 365–371.

[6]

Fong, R.; Von Sacken, U.; Dahn, J. R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J. Electrochem. Soc. 1990, 137, 2009–2013.

[7]

Xu, K. Li-ion battery electrolytes. Nat. Energy 2021, 6, 763.

[8]

Yan, C.; Xu, R.; Xiao, Y.; Ding, J. F.; Xu, L.; Li, B. Q.; Huang, J. Q. Toward critical electrode/electrolyte interfaces in rechargeable batteries. Adv. Funct. Mater. 2020, 30, 1909887.

[9]

Zhu, K. M.; Kramer, D.; Peng, C. Edge and lithium concentration effects on intercalation kinetics for graphite anodes. J. Energy Chem. 2024, 90, 337–347.

[10]

Yan, C.; Yao, Y. X.; Cai, W. L.; Xu, L.; Kaskel, S.; Park, H. S.; Huang, J. Q. The influence of formation temperature on the solid electrolyte interphase of graphite in lithium ion batteries. J. Energy Chem. 2020, 49, 335–338.

[11]

Flandrois, S.; Simon, B. Carbon materials for lithium-ion rechargeable batteries. Carbon 1999, 37, 165–180.

[12]
Yoshio, M.; Brodd, R. J.; Kozawa, A. Lithium-Ion Batteries: Science and Technologies; Springer: New York, 2009.
[13]

Sawai, K.; Ohzuku, T. Factors affecting rate capability of graphite electrodes for lithium-ion batteries. J. Electrochem. Soc. 2003, 150, A674–A678.

[14]

Huang, Y. S.; Wang, C. N.; Lv, H. F.; Xie, Y. S.; Zhou, S. Y.; Ye, Y. D.; Zhou, E.; Zhu, T. Y.; Xie, H. Y.; Jiang, W. et al. Bifunctional interphase promotes Li+ de-solvation and transportation enabling fast-charging graphite anode at low temperature. Adv. Mater. 2024, 36, 2308675.

[15]

Yu, L. G.; Yao, N.; Gao, Y. C.; Fu, Z. H.; Jiang, B.; Li, R. P.; Tang, C.; Chen, X. Probing the electric double layer structure at nitrogen-doped graphite electrodes by constant-potential molecular dynamics simulations. J. Energy Chem. 2024, 93, 299–305.

[16]

Yao, Y. X.; Yao, N.; Zhou, X. R.; Li, Z. H.; Yue, X. Y.; Yan, C.; Zhang, Q. Ethylene-carbonate-free electrolytes for rechargeable Li-ion pouch cells at sub-freezing temperatures. Adv. Mater. 2022, 34, 2206448.

[17]

Parimalam, B. S.; MacIntosh, A. D.; Kadam, R.; Lucht, B. L. Decomposition reactions of anode solid electrolyte interphase (SEI) components with LiPF6. J. Phys. Chem. C 2017, 121, 22733–22738.

[18]

Ota, H.; Sakata, Y.; Inoue, A.; Yamaguchi, S. Analysis of vinylene carbonate derived SEI layers on graphite anode. J. Electrochem. Soc. 2004, 151, A1659.

[19]

Yao, Y. X.; Chen, X.; Yao, N.; Gao, J. H.; Xu, G.; Ding, J. F.; Song, C. L.; Cai, W. L.; Yan, C.; Zhang, Q. Unlocking charge transfer limitations for extreme fast charging of Li-ion batteries. Angew. Chem., Int. Ed. 2023, 62, e202214828.

[20]

Cai, W. L.; Yan, C.; Yao, Y. X.; Xu, L.; Chen, X. R.; Huang, J. Q.; Zhang, Q. The boundary of lithium plating in graphite electrode for safe lithium-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 13007–13012.

[21]

Ren, X. C.; Zhang, X. Q.; Xu, R.; Huang, J. Q.; Zhang, Q. Analyzing energy materials by cryogenic electron microscopy. Adv. Mater. 2020, 32, 1908293.

[22]

Yousaf, M.; Naseer, U.; Imran, A.; Li, Y. J.; Aftab, W.; Mahmood, A.; Mahmood, N.; Zhang, X.; Gao, P.; Lu, Y. Y. et al. Visualization of battery materials and their interfaces/interphases using cryogenic electron microscopy. Mater. Today 2022, 58, 238–274.

[23]

Han, B.; Zou, Y. C.; Xu, G. Y.; Hu, S. G.; Kang, Y. Y.; Qian, Y. X.; Wu, J.; Ma, X. M.; Yao, J. Q.; Li, T. T. et al. Additive stabilization of SEI on graphite observed using cryo-electron microscopy. Energy Environ. Sci. 2021, 14, 4882–4889.

[24]
Xu, L.; Xiao, Y.; Yu, Z. X.; Yang, Y.; Yan, C.; Huang, J. Q. Revisiting the electrochemical impedance spectroscopy of porous electrodes in Li-ion batteries by employing reference electrode. Angew. Chem., Int. Ed., in press, DOI: 10.1002/anie.202406054.
[25]

Steinhauer, M.; Risse, S.; Wagner, N.; Friedrich, K. A. Investigation of the solid electrolyte interphase formation at graphite anodes in Lithium-ion batteries with electrochemical impedance spectroscopy. Electrochim. Acta 2017, 228, 652–658.

[26]

Xu, L.; Xiao, Y.; Yang, Y.; Yang, S. J.; Chen, X. R.; Xu, R.; Yao, Y. X.; Cai, W. L.; Yan, C.; Huang, J. Q. et al. Operando Quantified lithium plating determination enabled by dynamic capacitance measurement in working Li-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202210365.

[27]

Lu, Y.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 2022, 6, 1172–1198.

[28]

Yan, W. G.; Chen, Z. T.; Ma, S. Y.; Chen, S.; Lu, Y.; Wang, M.; Chen, L.; Huang, Q.; Wang, B.; Su, Y. et al. Unraveling the relationship between the mineralogical characteristics and lithium storage performance of natural graphite anode materials. Carbon 2024, 227, 119270.

[29]

Kuribayashi, I.; Yokoyama, M.; Yamashita, M. Battery characteristics with various carbonaceous materials. J. Power Sources 1995, 54, 1–5.

[30]

Natarajan, C.; Fujimoto, H.; Tokumitsu, K.; Mabuchi, A.; Kasuh, T. Reduction of the irreversible capacity of a graphite anode by the CVD process. Carbon 2001, 39, 1409–1413.

[31]

Yoshio, M.; Wang, H. Y.; Fukuda, K.; Hara, Y.; Adachi, Y. Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material. J. Electrochem. Soc. 2000, 147, 1245–1250.

[32]

Yoshio, M.; Wang, H. Y.; Fukuda, K. Spherical carbon-coated natural graphite as a lithium-ion battery-anode material. Angew. Chem., Int. Ed. 2003, 42, 4203–4206.

[33]

Zhang, H. L.; Liu, S. H.; Li, F.; Bai, S.; Liu, C.; Tan, J.; Cheng, H. M. Electrochemical performance of pyrolytic carbon-coated natural graphite spheres. Carbon 2006, 44, 2212–2218.

[34]

Cai, W. L.; Yan, C.; Yao, Y. X.; Xu, L.; Xu, R.; Jiang, L. L.; Huang, J. Q.; Zhang, Q. Rapid lithium diffusion in order@disorder pathways for fast-charging graphite anodes. Small Struct. 2020, 1, 2000010.

[35]

Zheng, B.; Zhou, W.; Liu, H.; Chen, S.; Gao, P.; Wang, Z. Y.; Liu, J. L. Surface chemistry induced robust SEI on graphite surface via soft carbon coating enables fast lithium storage. Carbon 2024, 218, 118729.

[36]

Jung, Y. S.; Cavanagh, A. S.; Riley, L. A.; Kang, S. H.; Dillon, A. C.; Groner, M. D.; George, S. M.; Lee, S. H. Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries. Adv. Mater. 2010, 22, 2172–2176.

[37]

Kazyak, E.; Chen, K. H.; Chen, Y. X.; Cho, T. H.; Dasgupta, N. P. Enabling 4C fast charging of lithium-ion batteries by coating graphite with a solid-state electrolyte. Adv. Energy Mater. 2022, 12, 2102618.

[38]

Niu, M.; Dong, L. W.; Yue, J. P.; Li, Y. Q.; Dong, Y. Y.; Cheng, S. C.; Lv, S.; Zhu, Y. H.; Lei, Z. T.; Liang, J. Y. et al. A fast-charge graphite anode with a Li-ion-conductive, electron/solvent-repelling interface. Angew. Chem., Int. Ed. 2024, 63, e202318663.

[39]

Sun, S. Y.; Zhang, X. Q.; Wang, Y. N.; Li, J. L.; Zheng, Z.; Huang, J. Q. Understanding the transport mechanism of lithium ions in solid-electrolyte interphase in lithium metal batteries with liquid electrolytes. Mater. Today 2024, 77, 39–65.

[40]

Xie, Q. M.; Chen, J. W.; Xing, L. D.; Zhou, X. G.; Ma, Z. K.; Wu, B. H.; Lin, Y. L.; Zhou, H. B.; Li, W. S. Revealing the critical effect of solid electrolyte interphase on the deposition and detriment of Co(Ⅱ) ions to graphite anode. J. Energy Chem. 2022, 69, 389–396.

[41]

Bhatt, M. D.; O'Dwyer, C. The role of carbonate and sulfite additives in propylene carbonate-based electrolytes on the formation of SEI layers at graphitic Li-ion battery anodes. J. Electrochem. Soc. 2014, 161, A1415–A1421.

[42]

Yang, Z.; Zhou, X. Z.; Hao, Z. Q.; Chen, J.; Li, L.; Zhao, Q.; Lai, W. H.; Chou, S. L. Insight into the role of fluoroethylene carbonate on the stability of Sb||Graphite dual-ion batteries in propylene carbonate-based electrolyte. Angew. Chem., Int. Ed. 2024, 63, e202313142.

[43]

Mei, W. X.; Jiang, L. H.; Zhou, H. M.; Sun, J. H.; Wang, Q. S. Correlating electrochemical performance and heat generation of Li plating for lithium-ion battery with fluoroethylene carbonate additive. J. Energy Chem. 2022, 74, 446–453.

[44]

Wetjen, M.; Pritzl, D.; Jung, R.; Solchenbach, S.; Ghadimi, R.; Gasteiger, H. A. Differentiating the degradation phenomena in silicon-graphite electrodes for lithium-ion batteries. J. Electrochem. Soc. 2017, 164, A2840–A2852.

[45]

Zhang, C. H.; Huo, S. D.; Su, B.; Bi, C. J.; Zhang, C.; Xue, W. D. Challenges of film-forming additives in low-temperature lithium-ion batteries: A review. J. Power Sources 2024, 606, 234559.

[46]

Xia, Z. Y.; Zhou, K.; Lin, X. Y.; Xie, Z. Y. T.; Chen, Q. R.; Li, X. Q.; Cai, J.; Li, S. L.; Wang, H.; Xu, M. Q. et al. Rationally designing electrolyte additives for highly improving cyclability of LiNi0.5Mn1.5O4/Graphite cells. J. Energy Chem. 2024, 91, 266–275.

[47]

Cheng, H. R.; Sun, Q. J.; Li, L. L.; Zou, Y. G.; Wang, Y. Q.; Cai, T.; Zhao, F.; Liu, G.; Ma, Z.; Wahyudi, W. et al. Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett. 2022, 7, 490–513.

[48]
Li, Z. H.; Yao, Y. X.; Zheng, M. T.; Sun, S.; Yang, Y.; Xiao, Y.; Xu, L.; Jin, C. B.; Yue, X. Y.; Song, T. L. et al. Electrolyte design enables rechargeable LiFePO4/Graphite batteries from −80°C to 80°C. Angew. Chem., Int. Ed., in press, DOI: 10.1002/anie.202409409.
[49]

Yao, Y. Y.; Yan, C.; Zhang, Q. Emerging interfacial chemistry of graphite anodes in lithium-ion batteries. Chem. Commun. 2020, 56, 14570–14584.

[50]

Yamada, Y.; Wang, J. H.; Ko, S.; Watanabe, E.; Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 2019, 4, 269–280.

[51]

Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 2014, 136, 5039–5046.

[52]

Wang, J. H.; Yamada, Y.; Sodeyama, K.; Watanabe, E.; Takada, K.; Tateyama, Y.; Yamada, A. Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 2018, 3, 22–29.

[53]

Jiang, L. L.; Yan, C.; Yao, Y. X.; Cai, W. L.; Huang, J. Q.; Zhang, Q. Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries. Angew. Chem., Int. Ed. 2021, 60, 3402–3406.

[54]

Yan, C.; Jiang, L. L.; Yao, Y. X.; Lu, Y.; Huang, J. Q.; Zhang, Q. Nucleation and growth mechanism of anion-derived solid electrolyte interphase in rechargeable batteries. Angew. Chem., Int. Ed. 2021, 60, 8521–8525.

[55]

Yao, Y. X.; Chen, X.; Yan, C.; Zhang, X. Q.; Cai, W. L.; Huang, J. Q.; Zhang, Q. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem., Int. Ed. 2021, 60, 4090–4097.

[56]

Lu, D.; Li, R. H.; Rahman, M. M.; Yu, P. Y.; Lv, L.; Yang, S.; Huang, Y. Q.; Sun, C. C.; Zhang, S. Q.; Zhang, H. K. et al. Ligand-channel-enabled ultrafast Li-ion conduction. Nature 2024, 627, 101–107.

[57]

Tao, L.; Xia, D. W.; Sittisomwong, P.; Zhang, H. R.; Lai, J. W.; Hwang, S.; Li, T. Y.; Ma, B. Y.; Hu, A. Y.; Min, J. et al. Solvent-mediated, reversible ternary graphite intercalation compounds for extreme-condition Li-ion batteries. J. Am. Chem. Soc. 2024, 146, 16764–16774.

[58]

Yang, Y. S.; Chen, Y. F.; Tan, L. L.; Zhang, J. W.; Li, N.; Ji, X.; Zhu, Y. J. Rechargeable LiNi0.65Co0.15Mn0.2O2||Graphite batteries operating at −60 °C. Angew. Chem., Int. Ed. 2022, 61, e202209619.

[59]

Cai, W. L.; Yao, Y. X.; Zhu, G. L.; Yan, C.; Jiang, L. L.; He, C. X.; Huang, J. Q.; Zhang, Q. A review on energy chemistry of fast-charging anodes. Chem. Soc. Rev. 2020, 49, 3806–3833.

[60]

Li, Z. H.; Yao, N.; Yu, L. G.; Yao, Y. X.; Jin, C. B.; Yang, Y.; Xiao, Y.; Yue, X. Y.; Cai, W. L.; Xu, L. et al. Inhibiting gas generation to achieve ultralong-lifespan lithium-ion batteries at low temperatures. Matter 2023, 6, 2274–2292.

[61]

Liu, H.; Cheng, X. B.; Yan, C.; Li, Z. H.; Zhao, C. Z.; Xiang, R.; Yuan, H.; Huang, J. Q.; Kuzmina, E.; Karaseva, E. et al. A perspective on energy chemistry of low-temperature lithium metal batteries. iEnergy 2022, 1, 72–81.

[62]

Yang, S. J.; Hu, J. K.; Jiang, F. N.; Yuan, H.; Park, H. S.; Huang, J. Q. Safer solid-state lithium metal batteries: Mechanisms and strategies. InfoMat 2024, 6, e12512.

[63]

Xu, P.; Shuang, Z. Y.; Zhao, C. Z.; Li, X.; Fan, L. Z.; Chen, A. B.; Chen, H. T.; Kuzmina, E.; Karaseva, E.; Kolosnitsyn, V. et al. A review of solid-state lithium metal batteries through in-situ solidification. Sci. China Chem. 2024, 67, 67–86.

[64]

Yang, Y.; Xu, L.; Yang, S. J.; Yan, C.; Huang, J. Q. Electrolyte inhomogeneity induced lithium plating in fast charging lithium-ion batteries. J. Energy Chem. 2022, 73, 394–399.

[65]

Xu, Y. J.; Wang, B.; Wan, Y.; Sun, Y.; Wang, W. L.; Sun, K.; Yang, L. J.; Hu, H.; Wu, M. B. Understanding the process of lithium deposition on a graphite anode for better lithium-ion batteries. New Carbon Mater. 2023, 38, 678–693.

[66]

Yang, Y.; Zhong, X. L.; Xu, L.; Yang, Z. L.; Yan, C.; Huang, J. Q. The principle and amelioration of lithium plating in fast-charging lithium-ion batteries. J. Energy Chem. 2024, 97, 453–459.

[67]

Liu, S. Y.; Gu, B. Q.; Chen, Z. H.; Zhan, R. M.; Wang, X. C.; Feng, R. K.; Sun, Y. M. Suppressing dendritic metallic Li formation on graphite anode under battery fast charging. J. Energy Chem. 2024, 91, 484–500.

[68]

Yan, S. S.; Chen, X. X.; Zhou, P.; Wang, P. C.; Zhou, H. Y.; Zhang, W. L.; Xia, Y. C.; Liu, K. Regulating the growth of lithium dendrite by coating an ultra-thin layer of gold on separator for improving the fast-charging ability of graphite anode. J. Energy Chem. 2022, 67, 467–473.

[69]

Yue, X. Y.; Zhang, J.; Dong, Y. T.; Chen, Y. M.; Shi, Z. Q.; Xu, X. J.; Li, X. L.; Liang, Z. Reversible Li plating on graphite anodes through electrolyte engineering for fast-charging batteries. Angew. Chem. Int. Ed. 2023, 62, e202302285.

[70]

Shi, P.; Hou, L. P.; Jin, C. B.; Xiao, Y.; Yao, Y. X.; Xie, J.; Li, B. Q.; Zhang, X. Q.; Zhang, Q. A successive conversion-deintercalation delithiation mechanism for practical composite lithium anodes. J. Am. Chem. Soc. 2022, 144, 212–218.

[71]

Xu, X. J.; Yue, X. Y.; Chen, Y. M.; Liang, Z. Li plating regulation on fast-charging graphite anodes by a triglyme-LiNO3 synergistic electrolyte additive. Angew. Chem., Int. Ed. 2023, 62, e202306963.

[72]

Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569.

[73]

Chang, X. Q.; Sun, N.; Zhou, H. Y.; Soomro, R. A.; Xu, B. Soft carbon-coated bulk graphite for improved potassium ion storage. Chin. Chem. Lett. 2023, 34, 107312.

[74]

Cao, B.; Zhang, Q.; Liu, H.; Xu, B.; Zhang, S. L.; Zhou, T. F.; Mao, J. F.; Pang, W. K.; Guo, Z. P.; Li, A. et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801149.

[75]

Liu, H.; Du, H. L.; Zhao, W.; Qiang, X. J.; Zheng, B.; Li, Y.; Cao, B. Fast potassium migration in mesoporous carbon with ultrathin framework boosting superior rate performance for high-power potassium storage. Energy Storage Mater. 2021, 40, 490–498.

[76]

Wang, D. K.; Zhang, J. P.; Dong, Y.; Cao, B.; Li, A.; Chen, X. H.; Yang, R.; Song, H. H. Progress on graphitic carbon materials for potassium-based energy storage. New Carbon Mater. 2021, 36, 435–448.

[77]

Li, B.; Cao, B. B.; Zhou, X. X.; Zhang, Z. Z.; Dai, D. M.; Jia, M. M.; Liu, D. H. Pre-constructed SEI on graphite-based interface enables long cycle stability for dual ion sodium batteries. Chin. Chem. Lett. 2023, 34, 107832.

[78]

Park, J.; Xu, Z. L.; Yoon, G.; Park, S. K.; Wang, J.; Hyun, H.; Park, H.; Lim, J.; Ko, Y. J.; Yun, Y. S. et al. Stable and high-power calcium-ion batteries enabled by calcium intercalation into graphite. Adv. Mater. 2020, 32, 1904411.

[79]

Yi, Y. Y.; Xing, Y. D.; Wang, H.; Zeng, Z. H.; Sun, Z. T.; Li, R. J.; Lin, H. J.; Ma, Y. Y.; Pu, X. J.; Li, M. M. J. et al. Deciphering anion-modulated solvation structure for calcium intercalation into graphite for Ca-ion batteries. Angew. Chem., Int. Ed. 2024, 63, e202317177.

[80]

Xiao, N.; Guo, H. D.; Xiao, J.; Wei, Y. B.; Ma, X. Q.; Zhang, X. Y.; Qiu, J. S. KOH-treated mesocarbon microbeads used as high-rate anode materials for potassium-ion batteries. New Carbon Mater. 2023, 38, 327–334.

[81]

Wang, H. Y.; Du, H. W.; Zhang, H. C.; Meng, S. J.; Lu, Z. S.; Jiang, H.; Li, C. Z.; Wang, J. J. Regulated adsorption-diffusion and enhanced charge transfer in expanded graphite cohered with N, B bridge-doping carbon patches to boost K-ion storage. J. Energy Chem. 2023, 76, 67–74.

[82]

Zhang, J. S.; Wu, J. F.; Wang, Z. X.; Mo, Y.; Zhou, W.; Peng, Y. F.; He, B. C.; Xiao, K. K.; Chen, S.; Xu, C. H. et al. Stabilizing SEI by cyclic ethers toward enhanced K+ storage in graphite. J. Energy Chem. 2022, 71, 344–350.

[83]

Fan, L.; Ma, R. F.; Zhang, Q. F.; Jia, X. X.; Lu, B. G. Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem., Int. Ed. 2019, 58, 10500–10505.

[84]

Liu, S. L.; Mao, J. F.; Zhang, Q.; Wang, Z. J.; Pang, W. K.; Zhang, L.; Du, A. J.; Sencadas, V.; Zhang, W. C.; Guo, Z. P. An intrinsically non-flammable electrolyte for high-performance potassium batteries. Angew. Chem. 2020, 132, 3667–3673.

[85]

Liu, S. L.; Mao, J. F.; Zhang, L.; Pang, W. K.; Du, A. J.; Guo, Z. P. Manipulating the solvation structure of nonflammable electrolyte and interface to enable unprecedented stability of graphite anodes beyond 2 years for safe potassium-ion batteries. Adv. Mater. 2021, 33, 2006313.

[86]

Qin, L.; Xiao, N.; Zheng, J. F.; Lei, Y.; Zhai, D. Y.; Wu, Y. Y. Localized high-concentration electrolytes boost potassium storage in high-loading graphite. Adv. Energy Mater. 2019, 9, 1902618.

[87]

Li, J. F.; Hu, Y. Y.; Xie, H. B.; Peng, J.; Fan, L.; Zhou, J.; Lu, B. G. Weak cation-solvent interactions in ether-based electrolytes stabilizing potassium-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202208291.

[88]

Cao, B.; Liu, H.; Zhang, P.; Sun, N.; Zheng, B.; Li, Y.; Du, H. L.; Xu, B. Flexible MXene framework as a fast electron/potassium-ion dual-function conductor boosting stable potassium storage in graphite electrodes. Adv. Funct. Mater. 2021, 31, 2102126.

[89]

Liu, H.; Xu, Z. J.; Cao, B.; Xin, Z. J.; Lai, H. J.; Gao, S.; Xu, B.; Yang, J. L.; Xiao, T.; Zhang, B. et al. Marangoni-driven self-assembly MXene as functional membrane enables dendrite-free and flexible zinc-iodine pouch cells. Adv. Energy Mater. 2024, 14, 2400318.

[90]

Cao, B.; Liu, H.; Zhang, X.; Zhang, P.; Zhu, Q. Z.; Du, H. L.; Wang, L. L.; Zhang, R. P.; Xu, B. MOF-derived ZnS nanodots/Ti3C2T x MXene hybrids boosting superior lithium storage performance. Nano-Micro Lett. 2021, 13, 202.

[91]

Shang, Z.; Yu, W. H.; Zhou, J. H.; Zhou, X.; Zeng, Z. Y.; Tursun, R.; Liu, X. G.; Xu, S. M. Recycling of spent lithium-ion batteries in view of graphite recovery: A review. eTransportation 2024, 20, 100320.

[92]

Yang, S. Z.; Gao, Q. Q.; Li, Y. K.; Cai, H. W.; Li, X. D.; Sun, G. X.; Zhuang, S. X.; Tong, Y. J.; Luo, H.; Lu, M. Residual fluoride self-activated effect enabling upgraded utilization of recycled graphite anode. J. Energy Chem. 2024, 93, 24–31.

[93]

Qin, H. Q.; Mo, Z. Z.; Lu, J.; Sui, X.; Song, Z. F.; Chen, B.; Zhang, Y. J.; Zhang, Z. J.; Lei, X. X.; Lu, A. J. et al. Ultrafast transformation of natural graphite into self-supporting graphene as superior anode materials for lithium-ion batteries. Carbon 2024, 216, 118559.

[94]

Cheng, X. B.; Liu, H.; Yuan, H.; Peng, H. J.; Tang, C.; Huang, J. Q.; Zhang, Q. A perspective on sustainable energy materials for lithium batteries. SusMat 2021, 1, 38–50.

[95]

Natarajan, S.; Divya, M. L.; Aravindan, V. Should we recycle the graphite from spent lithium-ion batteries? The untold story of graphite with the importance of recycling. J. Energy Chem. 2022, 71, 351–369.

[96]

Liu, J. J.; Shi, H.; Yu, K.; Geng, Y. N.; Hu, X. Y.; Yi, G. P.; Zhang, J. Z.; Luo, X. B. Regeneration and reuse of anode graphite from spent lithium-ion batteries with low greenhouse gas (GHG) emissions. Chin. Chem. Lett. 2023, 34, 108274.

[97]

Dong, S.; Song, Y. L.; Ye, K.; Yan, J.; Wang, G. L.; Zhu, K.; Cao, D. X. Ultra-fast, low-cost, and green regeneration of graphite anode using flash joule heating method. EcoMat 2022, 4, e12212.

[98]

Qiao, Y.; Zhao, H. P.; Shen, Y. L.; Li, L. Q.; Rao, Z. H.; Shao, G. S.; Lei, Y. Recycling of graphite anode from spent lithium-ion batteries: Advances and perspectives. EcoMat 2023, 5, e12321.

[99]

Wang, J. R.; Yang, D. H.; Xu, Y. J.; Hou, X. L.; Ang, E. H.; Wang, D. Z.; Zhang, L.; Zhu, Z. D.; Feng, X. Y.; Song, X. H. et al. Recent developments and the future of the recycling of spent graphite for energy storage applications. New Carbon Mater. 2023, 38, 787–803.

[100]

Chen, W.; Qu, H. T.; Shi, R. Y.; Wang, J. X.; Ji, H. C.; Zhuang, Z. F.; Ma, J.; Tang, D.; Li, J. F.; Tang, J. et al. Upcycling spent graphite into fast-charging anode materials through interface regulation. ACS Energy Lett. 2024, 9, 3505–3515.

[101]

Shi, Z. Y.; Wang, S. L.; Jin, Y. H.; Zhao, L. F.; Chen, S. W.; Yang, H. M.; Cui, Y. X.; Svanberg, R.; Tang, C. C.; Jiang, J. C. et al. Establishment of green graphite industry: Graphite from biomass and its various applications. SusMat 2023, 3, 402–415.

[102]

Ko, M.; Chae, S.; Ma, J.; Kim, N.; Lee, H. W.; Cui, Y.; Cho, J. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat. Energy 2016, 1, 16113.

[103]

Li, H. D.; Li, H. Y.; Lai, Y. Z.; Yang, Z. W.; Yang, Q.; Liu, Y. X.; Zheng, Z.; Liu, Y. X.; Sun, Y.; Zhong, B. H. et al. Revisiting the preparation progress of nano-structured Si anodes toward industrial application from the perspective of cost and scalability. Adv. Energy Mater. 2022, 12, 2102181.

[104]

Zhai, Y.; Zhong, Z. T.; Kuang, N. N.; Li, Q.; Xu, T. Z.; He, J. X.; Li, H. M.; Yin, X. J.; Jia, Y. R.; He, Q. et al. Both resilience and adhesivity define solid electrolyte interphases for a high performance anode. J. Am. Chem. Soc. 2024, 146, 15209–15218.

[105]

Zhang, R.; Chen, X.; Shen, X.; Zhang, X. Q.; Chen, X. R.; Cheng, X. B.; Yan, C.; Zhao, C. Z.; Zhang, Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2018, 2, 764–777.

[106]

Shen, X.; Cheng, X. B.; Shi, P.; Huang, J. Q.; Zhang, X. Q.; Yan, C.; Li, T.; Zhang, Q. Lithium-matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries. J. Energy Chem. 2019, 37, 29–34.

[107]

Lee, Y. G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D. S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat. Energy 2020, 5, 299–308.

[108]

Gao, Y. C.; Yao, N.; Chen, X.; Yu, L. G.; Zhang, R.; Zhang, Q. Data-driven insight into the reductive stability of ion-solvent complexes in lithium battery electrolytes. J. Am. Chem. Soc. 2023, 145, 23764–23770.

Carbon Future
Article number: 9200017
Cite this article:
Cao B, Du M, Guo Z, et al. The future of carbon anodes for lithium-ion batteries: The rational regulation of graphite interphase. Carbon Future, 2024, 1(3): 9200017. https://doi.org/10.26599/CF.2024.9200017

2438

Views

1140

Downloads

6

Crossref

Altmetrics

Received: 26 July 2024
Revised: 27 August 2024
Accepted: 09 September 2024
Published: 24 September 2024
© The Author(s) 2024.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See https://creativecommons.org/licenses/by/4.0/.

Return