AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Rational design of multifunctional framework materials for sustainable photocatalysis

Yingjie FanWenbin Lin ( )
Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
Show Author Information

Graphical Abstract

Rational design of framework materials leads to highly efficient and reusable photocatalysts for artificial photosynthesis and organic transformations.

Abstract

Photocatalysis harnesses photon energy to drive chemical reactions under mild conditions that would otherwise be thermodynamically uphill. Nature provides a blueprint for designing photocatalytic systems, as seen in photosynthesis, by assembling light-harvesting antenna complexes, electron transport chains, and catalytic enzymes to perform highly complex light-driven chemical syntheses. While methods leveraging the synergy between photosensitizers and catalytic complexes have been widely explored in photocatalysis, the hierarchical assembly of these components in material systems has been less studied. The emergence of framework materials, including metal-organic frameworks and covalent organic frameworks provides new opportunities for designing advanced photocatalysts based on these molecular material platforms. This minireview focuses on the design of framework materials for sustainable photocatalysis. We will discuss the design of framework materials for artificial photosynthesis and several important organic transformations and highlight the advantages of these catalytic framework materials over their homogeneous counterparts. Framework material-based photocatalysts are readily recovered from reactions and reused in multiple reaction runs, further contributing to the development of sustainable photocatalytic processes.

References

[1]

Ballif, C.; Haug, F. J.; Boccard, M.; Verlinden, P. J.; Hahn, G. Status and perspectives of crystalline silicon photovoltaics in research and industry. Nat. Rev. Mater. 2022, 7, 597–616.

[2]

Hill, R.; Bendall, F. Function of the two cytochrome components in chloroplasts: A working hypothesis. Nature 1960, 186, 136–137.

[3]

Govindjee; Shevela, D.; Björn, L. O. Evolution of the Z-scheme of photosynthesis: A perspective. Photosynth. Res. 2017, 133, 5–15.

[4]

Balzani, V.; Moggi, L.; Manfrin, M. F.; Bolletta, F.; Gleria, M. Solar energy conversion by water photodissociation. Science 1975, 189, 852–856.

[5]

Lehn, J. M.; Ziessel, R. Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation. Proc. Natl. Acad. Sci. USA 1982, 79, 701–704.

[6]

Eckenhoff, W. T. Molecular catalysts of Co, Ni, Fe, and Mo for hydrogen generation in artificial photosynthetic systems. Coord. Chem. Rev. 2018, 373, 295–316.

[7]

Takeda, H.; Cometto, C.; Ishitani, O.; Robert, M. Electrons, photons, protons and earth-abundant metal complexes for molecular catalysis of CO2 reduction. ACS Catal. 2017, 7, 70–88.

[8]

Marcus, R. A. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 1956, 24, 966–978.

[9]

Kumagai, H.; Tamaki, Y.; Ishitani, O. Photocatalytic systems for CO2 reduction: Metal-complex photocatalysts and their hybrids with photofunctional solid materials. Acc. Chem. Res. 2022, 55, 978–990.

[10]

Takata, T.; Jiang, J. Z.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581, 411–414.

[11]

Nocera, D. G. The artificial leaf. Acc. Chem. Res. 2012, 45, 767–776.

[12]

Smith, P. T.; Nichols, E. M.; Cao, Z.; Chang, C. J. Hybrid catalysts for artificial photosynthesis: Merging approaches from molecular, materials, and biological catalysis. Acc. Chem. Res. 2020, 53, 575–587.

[13]

Chen, R.; Zhuang, G. L.; Wang, Z. Y.; Gao, Y. J.; Li, Z.; Wang, C.; Zhou, Y.; Du, M. H.; Zeng, S. Y.; Long, L. S. et al. Integration of bio-inspired lanthanide-transition metal cluster and P-doped carbon nitride for efficient photocatalytic overall water splitting. Nat. Sci. Rev. 2021, 8, nwaa234.

[14]

Yaghi, O. M.; Li, H. L. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 1995, 117, 10401–10402.

[15]

Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170.

[16]

Yin, H. Q.; Zhang, Z. M.; Lu, T. B. Ordered integration and heterogenization of catalysts and photosensitizers in metal-/covalent organic frameworks for boosting CO2 photoreduction. Acc. Chem. Res. 2023, 56, 2676–2687.

[17]

Pan, Z. H.; Weng, Z. Z.; Kong, X. J.; Long, L. S.; Zheng, L. S. Lanthanide-containing clusters for catalytic water splitting and CO2 conversion. Coord. Chem. Rev. 2022, 457, 214419.

[18]

Drake, T.; Ji, P. F.; Lin, W. B. Site isolation in metal-organic frameworks enables novel transition metal catalysis. Acc. Chem. Res. 2018, 51, 2129–2138.

[19]

Kesanli, B.; Lin, W. B. Chiral porous coordination networks: Rational design and applications in enantioselective processes. Coord. Chem. Rev. 2003, 246, 305–326.

[20]

Lin, J. X.; Ouyang, J.; Liu, T. Y.; Li, F. X.; Sung, H. H. Y.; Williams, I.; Quan, Y. J. Metal-organic framework boosts heterogeneous electron donor-acceptor catalysis. Nat. Commun. 2023, 14, 7757.

[21]

Cheng, S. X.; Ouyang, J.; Li, M. Q.; Diao, Y. X.; Yao, J. C.; Li, F. X.; Lee, Y. F.; Sung, H. H. Y.; Williams, I.; Xu, Z. T. et al. Charge separation in metal-organic framework enables heterogeneous thiol catalysis. Angew. Chem., Int. Ed. 2023, 62, e202300993.

[22]

Feng, X. Y.; Song, Y.; Lin, W. B. Transforming hydroxide-containing metal-organic framework nodes for transition metal catalysis. Trends Chem. 2020, 2, 965–979.

[23]

Guo, S.; Kong, L. H.; Wang, P.; Yao, S.; Lu, T. B.; Zhang, Z. M. Switching excited state distribution of metal-organic framework for dramatically boosting photocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202206193.

[24]

Zeng, L. Z.; Cao, Y. H.; Li, Z.; Dai, Y. H.; Wang, Y. K.; An, B.; Zhang, J. Z.; Li, H.; Zhou, Y.; Lin, W. B. et al. Multiple cuprous centers supported on a titanium-based metal-organic framework catalyze CO2 hydrogenation to ethylene. ACS Catal. 2021, 11, 11696–11705.

[25]

Zhang, J. Z.; An, B.; Li, Z.; Cao, Y. H.; Dai, Y. H.; Wang, W. Y.; Zeng, L. Z.; Lin, W. B.; Wang, C. Neighboring Zn–Zr sites in a metal-organic framework for CO2 hydrogenation. J. Am. Chem.Soc. 2021, 143, 8829–8837.

[26]

Jiang, J. C.; Gándara, F.; Zhang, Y. B.; Na, K.; Yaghi, O. M.; Klemperer, W. G. Superacidity in sulfated metal-organic framework-808. J. Am. Chem. Soc. 2014, 136, 12844–12847.

[27]

Cao, L. Y.; Lin, Z. K.; Peng, F.; Wang, W. W.; Huang, R. Y.; Wang, C.; Yan, J. W.; Liang, J.; Zhang, Z. M.; Zhang, T. et al. Self-supporting metal-organic layers as single-site solid catalysts. Angew. Chem., Int. Ed. 2016, 55, 4962–4966.

[28]

Jati, A.; Dey, K.; Nurhuda, M.; Addicoat, M. A.; Banerjee, R.; Maji, B. Dual metalation in a two-dimensional covalent organic framework for photocatalytic C–N cross-coupling reactions. J. Am. Chem. Soc. 2022, 144, 7822–7833.

[29]

Wang, H.; Wang, H.; Wang, Z. W.; Tang, L.; Zeng, G. M.; Xu, P.; Chen, M.; Xiong, T.; Zhou, C. Y.; Li, X. Y. et al. Covalent organic framework photocatalysts: Structures and applications. Chem. Soc. Rev. 2020, 49, 4135–4165.

[30]

Li, Z. P.; Zhi, Y. F.; Shao, P. P.; Xia, H.; Li, G. S.; Feng, X.; Chen, X.; Shi, Z.; Liu, X. M. Covalent organic framework as an efficient, metal-free, heterogeneous photocatalyst for organic transformations under visible light. Appl. Catal. B: Environ. 2019, 245, 334–342.

[31]

Xu, H. T.; Xia, S. L.; Li, C. L.; Li, Y.; Xing, W. D.; Jiang, Y.; Chen, X. Programming tetrathiafulvalene-based covalent organic frameworks for promoted photoinduced molecular oxygen activation. Angew. Chem., Int.Ed. 2024, 63, e202405476.

[32]

Liu, C.; Colón, B. C.; Ziesack, M.; Silver, P. A.; Nocera, D. G. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 2016, 352, 1210–1213.

[33]

Hong, Y. H.; Lee, Y. M.; Nam, W.; Fukuzumi, S. Molecular photocatalytic water splitting by mimicking photosystems I and II. J. Am. Chem. Soc. 2022, 144, 695–700.

[34]

Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc.Rev. 2019, 48, 1004–1076.

[35]

Zhang, B. B.; Sun, L. C. Artificial photosynthesis: Opportunities and challenges of molecular catalysts. Chem. Soc. Rev. 2019, 48, 2216–2264.

[36]

Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 2019, 48, 2109–2125.

[37]

Wang, S. B.; Wang, X. C. Multifunctional metal-organic frameworks for photocatalysis. Small 2015, 11, 3097–3112.

[38]

Wang, S. B.; Yao, W. S.; Lin, J. L.; Ding, Z. X.; Wang, X. C. Cobalt imidazolate metal-organic frameworks photosplit CO2 under mild reaction conditions. Angew Chem., Int. Ed. 2014, 53, 1034–1038.

[39]

Wang, S. B.; Wang, X. C. Photocatalytic CO2 reduction by CdS promoted with a zeolitic imidazolate framework. Appl. Catal. B: Environ. 2015, 162, 494–500.

[40]

Lan, G. X.; Fan, Y. J.; Shi, W. J.; You, E.; Veroneau, S. S.; Lin, W. B. Biomimetic active sites on monolayered metal-organic frameworks for artificial photosynthesis. Nat. Catal. 2022, 5, 1006–1018.

[41]

Jiang, Z. F.; Wan, W. M.; Li, H. M.; Yuan, S. Q.; Zhao, H. J.; Wong, P. K. A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv. Mater. 2018, 30, 1706108.

[42]

Wang, J. S.; Qin, C. L.; Wang, H. J.; Chu, M. N.; Zada, A.; Zhang, X. L.; Li, J. D.; Raziq, F.; Qu, Y.; Jing, L. Q. Exceptional photocatalytic activities for CO2 conversion on Al–O bridged g-C3N4/α-Fe2O3 Z-scheme nanocomposites and mechanism insight with isotopesZ. Appl. Catal. B: Environ. 2018, 221, 459–466.

[43]

Bae, K. L.; Kim, J.; Lim, C. K.; Nam, K. M.; Song, H. Colloidal zinc oxide-copper(I) oxide nanocatalysts for selective aqueous photocatalytic carbon dioxide conversion into methane. Nat. Commun. 2017, 8, 1156.

[44]

Jin, J.; Yu, J. G.; Guo, D. P.; Cui, C.; Ho, W. A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity. Small 2015, 11, 5262–5271.

[45]

Aguirre, M. E.; Zhou, R. X.; Eugene, A. J.; Guzman, M. I.; Grela, M. A. Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion. Appl. Catal. B: Environ. 2017, 217, 485–493.

[46]

Shen, Y.; Han, Q. T.; Hu, J. Q.; Gao, W.; Wang, L.; Yang, L. Q.; Gao, C.; Shen, Q.; Wu, C. P.; Wang, X. Y. et al. Artificial trees for artificial photosynthesis: Construction of dendrite-structured α-Fe2O3/g-C3N4 Z-scheme system for efficient CO2 reduction into solar fuels. ACS Appl. Energy Mater. 2020, 3, 6561–6572.

[47]

Han, Q. T.; Li, L.; Gao, W.; Shen, Y.; Wang, L.; Zhang, Y. T.; Wang, X. Y.; Shen, Q.; Xiong, Y. J.; Zhou, Y. et al. Elegant construction of ZnIn2S4/BiVO4 hierarchical heterostructures as direct Z-scheme photocatalysts for efficient CO2 photoreduction. ACS Appl. Mater. Interfaces 2021, 13, 15092–15100.

[48]

Guo, R. T.; Liu, X. Y.; Qin, H.; Wang, Z. Y.; Shi, X.; Pan, W. G.; Fu, Z. G.; Tang, J. Y.; Jia, P. Y.; Miao, Y. F. et al. Photocatalytic reduction of CO2 into CO over nanostructure Bi2S3 quantum dots/g-C3N4 composites with Z-scheme mechanism. Appl Surf. Sci. 2020, 500, 144059.

[49]

Jiang, Z.; Xu, X. H.; Ma, Y. H.; Cho, H. S.; Ding, D.; Wang, C.; Wu, J.; Oleynikov, P.; Jia, M.; Cheng, J. et al. Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction. Nature 2020, 586, 549–554.

[50]

Liang, L.; Li, X. D.; Sun, Y. F.; Tan, Y. L.; Jiao, X. C.; Ju, H. X.; Qi, Z. M.; Zhu, J. F.; Xie, Y. Infrared light-driven CO2 overall splitting at room temperature. Joule 2018, 2, 1004–1016.

[51]

Wu, L. Y.; Mu, Y. F.; Guo, X. X.; Zhang, W.; Zhang, Z. M.; Zhang, M.; Lu, T. B. Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 9491–9495.

[52]

Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 2016, 81, 6898–6926.

[53]

Romero, N. A.; Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 2016, 116, 10075–10166.

[54]

Dighe, S. U.; Juliá, F.; Luridiana, A.; Douglas, J. J.; Leonori, D. A photochemical dehydrogenative strategy for aniline synthesis. Nature 2020, 584, 75–81.

[55]

Zuo, Z. W.; Ahneman, D. T.; Chu, L. L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Merging photoredox with nickel catalysis: Coupling of α-carboxyl sp3-carbons with aryl halides. Science 2014, 345, 437–440.

[56]

Kautzky, J. A.; Wang, T.; Evans, R. W.; MacMillan, D. W. C. Decarboxylative trifluoromethylation of aliphatic carboxylic acids. J. Am. Chem. Soc. 2018, 140, 6522–6526.

[57]

Fan, Y. J.; You, E.; Xu, Z. W.; Lin, W. B. A substrate-binding metal-organic layer selectively catalyzes photoredox ene-carbonyl reductive coupling reactions. J. Am. Chem. Soc. 2021, 143, 18871–18876.

[58]

Quan, Y. J.; Lan, G. X.; Fan, Y. J.; Shi, W. J.; You, E.; Lin, W. B. Metal-organic layers for synergistic Lewis acid and photoredox catalysis. J. Am. Chem. Soc. 2020, 142, 1746–1751.

[59]

Zheng, H. F.; Fan, Y. J.; Blenko, A. L.; Lin, W. B. Sequential modifications of metal-organic layer nodes for highly efficient photocatalyzed hydrogen atom transfer. J. Am. Chem. Soc. 2023, 145, 9994–10000.

[60]

Fan, Y. J.; Blenko, A. L.; Labalme, S.; Lin, W. B. Metal-organic layers with photosensitizer and pyridine pairs activate alkyl halides for photocatalytic heck-type coupling with olefins. J. Am. Chem. Soc. 2024, 146, 7936–7941.

[61]

Lan, G. X.; Quan, Y. J.; Wang, M. L.; Nash, G. T.; You, E.; Song, Y.; Veroneau, S. S.; Jiang, X. M.; Lin, W. B. Metal-organic layers as multifunctional two-dimensional nanomaterials for enhanced photoredox catalysis. J. Am. Chem. Soc. 2019, 141, 15767–15772.

[62]

Fan, Y. J.; Zheng, H. F.; Labalme, S.; Lin, W. B. Molecular engineering of metal-organic layers for sustainable tandem and synergistic photocatalysis. J. Am. Chem. Soc. 2023, 145, 4158–4165.

[63]

Zheng, H. F.; Fan, Y. J.; Song, Y.; Chen, J. S.; You, E.; Labalme, S.; Lin, W. B. Site isolation in metal-organic layers enhances photoredox gold catalysis. J. Am. Chem. Soc. 2022, 144, 10694–10699.

[64]

Lee, K. N.; Lei, Z.; Ngai, M. Y. β-selective reductive coupling of alkenylpyridines with aldehydes and imines via synergistic Lewis acid/photoredox catalysis. J. Am. Chem. Soc. 2017, 139, 5003–5006.

[65]

Jin, J.; MacMillan, D. W. C. Direct α-Arylation of ethers through the combination of photoredox-mediated C–H functionalization and the minisci reaction. Angew. Chem., Int. Ed. 2015, 54, 1565–1569.

[66]

Fan, X. Z.; Rong, J. W.; Wu, H. L.; Zhou, Q.; Deng, H. P.; Tan, J. D.; Xue, C. W.; Wu, L. Z.; Tao, H. R.; Wu, J. Eosin Y as a direct hydrogen-atom transfer photocatalyst for the functionalization of C−H bonds. Angew. Chem., Int. Ed. 2018, 57, 8514–8518.

[67]

Liu, Q.; Yi, H.; Liu, J.; Yang, Y. H.; Zhang, X.; Zeng, Z. Q.; Lei, A. W. Visible-light photocatalytic radical alkenylation of α-carbonyl alkyl bromides and benzyl bromides. Chem.- European J. 2013, 19, 5120–5126.

[68]

Oderinde, M. S.; Frenette, M.; Robbins, D. W.; Aquila, B.; Johannes, J. W. Photoredox mediated nickel catalyzed cross-coupling of thiols with aryl and heteroaryl iodides via thiyl radicals. J. Am. Chem. Soc. 2016, 138, 1760–1763.

[69]

Sahoo, B.; Hopkinson, M. N.; Glorius, F. Combining gold and photoredox catalysis: Visible light-mediated oxy- and aminoarylation of alkenes. J. Am. Chem. Soc. 2013, 135, 5505–5508.

[70]

Tcyrulnikov, S.; Cai, Q. Q.; Twitty, J. C.; Xu, J. Y.; Atifi, A.; Bercher, O. P.; Yap, G. P. A.; Rosenthal, J.; Watson, M. P.; Kozlowski, M. C. Dissection of alkylpyridinium structures to understand deamination reactions. ACS Catal. 2021, 11, 8456–8466.

[71]

Traxler, M.; Gisbertz, S.; Pachfule, P.; Schmidt, J.; Roeser, J.; Reischauer, S.; Rabeah, J.; Pieber, B.; Thomas, A. Acridine-functionalized covalent organic frameworks (COFs) as photocatalysts for metallaphotocatalytic C−N cross-coupling. Angew. Chem., Int. Ed. 2022, 61, e202117738.

[72]

Dong, W. B.; Yang, Y.; Xiang, Y. G.; Wang, S. Y.; Wang, P.; Hu, J. X.; Rao, L.; Chen, H. A highly stable all-in-one photocatalyst for aryl etherification: The NiII embedded covalent organic framework. Green Chem. 2021, 23, 5797–5805.

[73]

Chen, H.; Liu, W. L.; Laemont, A.; Krishnaraj, C.; Feng, X.; Rohman, F.; Meledina, M.; Zhang, Q. Q.; Van Deun, R.; Leus, K. et al. A visible-light-harvesting covalent organic framework bearing single nickel sites as a highly efficient sulfur-carbon cross-coupling dual catalyst. Angew. Chem., Int. Ed. 2021, 60, 10820–10827.

[74]

López-Magano, A.; Ortín-Rubio, B.; Imaz, I.; Maspoch, D.; Alemán, J.; Mas-Ballesté, R. Photoredox heterobimetallic dual catalysis using engineered covalent organic frameworks. ACS Catal. 2021, 11, 12344–12354.

[75]

Fan, Y. J.; Kang, D. W.; Labalme, S.; Li, J. H.; Lin, W. B. Enhanced energy transfer in a π-conjugated covalent organic framework facilitates excited-state nickel catalysis. Angew. Chem., Int. Ed. 2023, 62, e202218908.

[76]

Fan, Y. J.; Kang, D. W.; Labalme, S.; Lin, W. B. A Spirobifluorene-based covalent organic framework for dual photoredox and nickel catalysis. J. Am. Chem. Soc. 2023, 145, 25074–25079.

[77]

Ting, S. I.; Garakyaraghi, S.; Taliaferro, C. M.; Shields, B. J.; Scholes, G. D.; Castellano, F. N.; Doyle, A. G. 3d-d excited states of Ni(II) complexes relevant to photoredox catalysis: Spectroscopic identification and mechanistic implications. J. Am. Chem. Soc. 2020, 142, 5800–5810.

[78]

Terrett, J. A.; Cuthbertson, J. D.; Shurtleff, V. W.; MacMillan, D. W. C. Switching on elusive organometallic mechanisms with photoredox catalysis. Nature 2015, 524, 330–334.

[79]

Corcoran, E. B.; Pirnot, M. T.; Lin, S. S.; Dreher, S. D.; DiRocco, D. A.; Davies, I. W.; Buchwald, S. L.; MacMillan, D. W. C. Aryl amination using ligand-free Ni(II) salts and photoredox catalysis. Science 2016, 353, 279–283.

Carbon Future
Article number: 9200018
Cite this article:
Fan Y, Lin W. Rational design of multifunctional framework materials for sustainable photocatalysis. Carbon Future, 2024, 1(3): 9200018. https://doi.org/10.26599/CF.2024.9200018

884

Views

305

Downloads

0

Crossref

Altmetrics

Received: 05 August 2024
Revised: 12 September 2024
Accepted: 13 September 2024
Published: 26 September 2024
© The Author(s) 2024.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See https://creativecommons.org/licenses/by/4.0/.

Return