Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Since the introduction of single-atom catalysts (SACs), they have attracted considerable attention. Their high atomic efficiency and simple coordination environment make SACs a promising alternative to commercial catalysts. However, they face limitations, often showing relatively low efficiency in producing multi-carbon products. In contrast, multi-atomic catalysts (MACs), with their higher exposure of active sites, may outperform SACs owing to the synergistic effects between adjacent metallic centers. Therefore, it is essential to review the opportunities and challenges of MACs in the carbon neutrality field, offering potential guidance for future research.
Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.
Tang, T. M.; Wang, Z. L.; Guan, J. Q. Structural optimization of carbon-based diatomic catalysts towards advanced electrocatalysis. Coord. Chem. Rev. 2023, 492, 215288.
Zha, W.; Liu, D. W.; Ma, Z. J.; Wang, Y. Z.; Wei, Y. O. N. C.; Ma, X. F. N.; Wang, L. L.; Zhang, Q. Q.; Lou, B. Y.; Yuan, R. S. et al. Efficient electrochemical CO2 reduction on C2N monolayer supported transition metals trimer catalysts: A DFT study. Appl. Surf. Sci. 2021, 564, 150331.
Yang, X. F.; Wang, A.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.
Gloag, L.; Somerville, S. V.; Gooding, J. J.; Tilley, R. D. Co-catalytic metal-support interactions in single-atom electrocatalysts. Nat. Rev. Mater. 2024, 9, 173–189.
Zeng, L.; Cheng, K.; Sun, F. F.; Fan, Q. Y.; Li, L. Y.; Zhang, Q. H.; Wei, Y.; Zhou, W.; Kang, J. C.; Zhang, Q. Y. et al. Stable anchoring of single rhodium atoms by indium in zeolite alkane dehydrogenation catalysts. Science 2024, 383, 998–1004.
Hai, X.; Zheng, Y.; Yu, Q.; Guo, N.; Xi, S. B.; Zhao, X. X.; Mitchell, S.; Luo, X. H.; Tulus, V.; Wang, M. et al. Geminal-atom catalysis for cross-coupling. Nature 2023, 622, 754–760.
Shi, Z. Y.; Zhang, X.; Lin, X. Q.; Liu, G. G.; Ling, C. Y.; Xi, S. B.; Chen, B.; Ge, Y. Y.; Tan, C. L.; Lai, Z. C. et al. Phase-dependent growth of Pt on MoS2 for highly efficient H2 evolution. Nature 2023, 621, 300–305.
Gu, J.; Jian, M. Z.; Huang, L.; Sun, Z. H.; Li, A. W.; Pan, Y.; Yang, J. Z.; Wen, W.; Zhou, W.; Lin, Y. et al. Synergizing metal-support interactions and spatial confinement boosts dynamics of atomic nickel for hydrogenations. Nat. Nanotechnol. 2021, 16, 1141–1149.
Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.
Zhu, E. Z.; Zheng, T. L.; Yu, J.; Shi, C. Y.; Zhou, L. X.; Jin, H. D.; Yang, J. R.; Luo, G. T.; Wei, D. Y.; Yang, X. K. et al. Electron redistribution and proton transfer induced by atomically fully exposed Cu–O–Fe clusters coupled with single-atom sites for efficient oxygen electrocatalysis. Energy Storage Mater. 2024, 69, 103410.
Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2000051.
Yang, L.; Feng, S. H.; Zhu, W. H. Achieving reaction pathway separation for electrochemical nitrate fixation on triatomic catalysts: A new mechanism. J. Hazard. Mater. 2023, 441, 129972.
Chen, Z. Y.; Su, X. Z.; Ding, J.; Yang, N.; Zuo, W. B.; He, Q. Y.; Wei, Z. M.; Zhang, Q.; Huang, J.; Zhai, Y. M. Boosting oxygen reduction reaction with Fe and Se dual-atom sites supported by nitrogen-doped porous carbon. Appl. Catal. B: Environ. 2022, 308, 121206.
Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem. 2021, 133, 19233–19239.
Wang, L. W.; Liu, P. F.; Yang, J.; Liang, C. J.; Deng, C. S.; Zhao, Y. X.; Guo, X. F.; Peng, L. M.; Xue, N. H.; Wang, Q. CO2 electroreduction to acetate by enhanced tandem effects of surface intermediate over Co3O4 supported polyaniline catalyst. Carbon Future 2024, 1, 9200013.
Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem. 2022, 134, e202213318.
Song, X. Y.; Diao, S. Y.; He, W. J.; Yang, J.; Wang, L. L.; Qin, G.; Li, Y.; Chen, Q. Design of active dual atom Ni–Co–2H–MoS2 catalyst: Synergistic effect of Ni-adsorption and co-catalysis for activating peroxymonosulfate. Sep. Purif. Technol. 2024, 333, 125927.
Wang, X. Y.; Pan, Y. Z.; Yang, J. R.; Li, W. H.; Gan, T.; Pan, Y. M.; Tang, H. T.; Wang, D. S. Single-atom iron catalyst as an advanced redox mediator for anodic oxidation of organic electrosynthesis. Angew. Chem., Int. Ed. 2024, 63, e202404295.
Zhao, J.; Zhang, Y. X.; Zhuang, Z. C.; Deng, Y. T.; Gao, G.; Li, J. Y.; Meng, A. L.; Li, G. C.; Wang, L.; Li, Z. J. et al. Tailoring d-p orbital hybridization to decipher the essential effects of heteroatom substitution on redox kinetics. Angew. Chem. 2024, 136, e202404968.
Zhang, Y. D.; Sun, Y. J.; Wang, Q. Y.; Zhuang, Z. C.; Ma, Z. T.; Liu, L. M.; Wang, G. M.; Wang, D. S.; Zheng, X. S. Synergy of photogenerated electrons and holes toward efficient photocatalytic urea synthesis from CO2 and N2. Angew. Chem., Int. Ed. 2024, 63, e202405637.
Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru–Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem. 2024, 136, e202319618.
Qiu, W. B.; Qin, S. M.; Li, Y. B.; Cao, N.; Cui, W. R.; Zhang, Z. D.; Zhuang, Z. C.; Wang, D. S.; Zhang, Y. Overcoming electrostatic interaction via pulsed electroreduction for boosting the electrocatalytic urea synthesis. Angew. Chem. 2024, 136, e202402684.
Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem. 2023, 135, e202215136.
Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem. 2024, 136, e202315032.
Chen, S. H.; Ye, C. L.; Wang, Z. W.; Li, P.; Jiang, W. J.; Zhuang, Z. C.; Zhu, J. X.; Zheng, X. B.; Zaman, S.; Ou, H. H. Selective CO2 reduction to ethylene mediated by adaptive small-molecule engineering of copper-based electrocatalysts. Angew. Chem. 2023, 135, e202315621.
Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0−Coδ+ interface double-site-mediated C−C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.
Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)–Ru–P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem. 2023, 135, e202308800.
Gao, Y.; Wang, D. S. Atomically dispersed catalysts: Precise synthesis, structural regulation, and structure-activity relationship. CCS Chem. 2024, 6, 833–855.
Zhou, A. W.; Wang, D. S.; Li, Y. D. Hollow microstructural regulation of single-atom catalysts for optimized electrocatalytic performance. Microstructures 2022, 2, 2022005.
Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.
Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.
Zhuang, J. H.; Wang, D. S. Recent advances of single-atom alloy catalyst: Properties, synthetic methods and electrocatalytic applications. Mater. Today Catal. 2023, 2, 100009.
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.
Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.
Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.
Wang, L. G.; Wang, D. S.; Li, Y. D. Single-atom catalysis for carbon neutrality. Carbon Energy 2022, 4, 1021–1079.
Wu, Y.; Tan, S. J.; Zhang, T. C.; Zhou, M.; Fang, G.; Ji, G. B. Alkali and ion exchange co-modulation strategies to design magnetic-dielectric synergistic nano-absorbers for tailoring microwave absorption. Nano Res. 2023, 16, 8522–8532.
Zhang, C. M.; Liang, L.; Zhao, S. L.; Wu, Z. J.; Wang, S. H.; Yin, D. M.; Wang, Q. S.; Wang, L. M.; Wang, C. L.; Cheng, Y. Dehydrogenation behavior and mechanism of LiAlH4 adding nano-CeO2 with different morphologies. Nano Res. 2023, 16, 9426–9434.
Chopra, D.; Guo, T. Q.; Ivanovski, S.; Gulati, K. Single-step nano-engineering of multiple micro-rough metals via anodization. Nano Res. 2023, 16, 1320–1329.
Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.
Gao, Y. Z.; Zhang, W. Y.; Choi, C.; Shang, B.; Cheon, S.; Meese, A. F.; Kim, J. H.; Long, D. H.; Fortner, J.; Wang, H. L. Effective electrochemical trichloroethylene removal from water enabled by selective molecular catalysis. Carbon Future 2024, 1, 9200015.
Wang, W. H.; Wang, Y.; Kong, X. J.; Ning, H.; Wu, M. B. Carbon-based material for CO2 catalytic conversion applications. Carbon Future 2024, 1, 9200016.
Hou, Z. L.; Du, K. R.; Zhang, Y. Q.; Bi, S.; Zhang, J. Y. Nanoarchitectonics of MnO2 nanotubes as sea urchin-like aggregates for dielectric response and microwave absorption with a wide concentration domain. Nano Res. 2023, 16, 2604–2610.
Wang, B. J.; Huang, F. Z.; Wu, H.; Xu, Z. J.; Wang, S. P.; Han, Q. H.; Liu, F. H.; Li, S. K.; Zhang, H. Enhanced interfacial polarization of defective porous carbon confined CoP nanoparticles forming Mott-Schottky heterojunction for efficient electromagnetic wave absorption. Nano Res. 2023, 16, 4160–4169.
Ouyang, B.; Qin, H. N.; Sun, C.; Deng, Y. L.; Li, A.; Zhu, J. P.; Kan, E. J.; Rawat, R. S. Tailored heterostructured Ni3N–NiO nano-frameworks for boosting electrocatalytic oxygen evolution via surface-modulated plasma strategy. Nano Res. 2024, 17, 7909–7917.
Li, Z. S.; Li, B. L.; Yu, M.; Yu, C. L.; Shen, P. K. Amorphous metallic ultrathin nanostructures: A latent ultra-high-density atomic-level catalyst for electrochemical energy conversion. Int. J. Hydrogen Energy 2022, 47, 26956–26977.
Dai, X. Y.; Yan, P. Q.; Bai, Y. L.; Guo, M.; Qi, W. Phosphorus modified onion-like carbon catalyzed methanol conversion to dimethoxymethane: The unique role of P–C species. Carbon Future 2024, 1, 9200012.
Cao, G. B.; Xing, H. R.; Gui, H. G.; Yao, C.; Chen, Y. J.; Chen, Y. S.; Li, X. Z. Plasmonic quantum dots modulated nano-mineral toward photothermal reduction of CO2 coupled with biomass conversion. Nano Res. 2024, 17, 5061–5072.
Xu, H. X.; He, Z. Z.; Wang, Y. R.; Ren, X. R.; Liu, P. B. Metal-phenolic coordination crystals derived magnetic hollow carbon spheres for ultrahigh electromagnetic wave absorption. Nano Res. 2024, 17, 1616–1624.
Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem. 2022, 134, e202200366.
Xue, Z.; Yu, W. W.; Zhang, T.; He, S. Y.; Zhao, W. T.; Wang, B. J.; Liu, Y. F.; Zou, B. X.; Zhang, R. G.; Zhao, Z. K. Adjacent diatomic Cu1N3/Mo1S2 entities decorated carbon nitride for markedly enhanced photocatalytic hydrogen generation. Chem. Eng. J. 2023, 463, 142470.
Kuhn, A. N.; Park, R. C.; Yu, S. Y.; Gao, D.; Zhang, C.; Zhang, Y. H.; Yang, H. Valorization of carbon dioxide into C1 product via reverse water gas shift reaction using oxide-supported molybdenum carbides. Carbon Future 2024, 1, 9200011.
Zhu, H. J.; Li, M. H.; Zou, L. N.; Hu, Y. Y.; Hao, H. G.; Dou, J. M.; Mao, J. J. A study on singlet oxygen generation for tetracycline degradation via modulating the size of α-Fe2O3 nanoparticle anchored on g-C3N4 nanotube photocatalyst. Nano Res. 2023, 16, 2236–2244.
Yang, J. R.; Li, W. H.; Tang, H. T.; Pan, Y. M.; Wang, D. S.; Li, Y. D. CO2-mediated organocatalytic chlorine evolution under industrial conditions. Nature 2023, 617, 519–523.
Zhang, L. L.; Shi, X. X.; Xu, A. J.; Zhong, W. W.; Zhang, J. T.; Shen, S. J. Novel CoP/CoMoP2 heterojunction with nanoporous structure as an efficient electrocatalyst for hydrogen evolution. Nano Res. 2024, 17, 3693–3699.
Li, R. S.; Gu, C. S.; Rao, P.; Deng, P. L.; Wu, D. X.; Luo, J. M.; Li, J.; Miao, Z. P.; Zheng, C. W.; Shen, C. et al. Ternary single atom catalysts for effective oxygen reduction and evolution reactions. Chem. Eng. J. 2023, 468, 143641.
Zhu, C. X.; Yang, J. R.; Zhang, J. W.; Wang, X. Q.; Gao, Y.; Wang, D. S.; Pan, H. G. Single-atom materials: The application in energy conversion. Interdiscip. Mater. 2024, 3, 74–86.
Jiang, B.; Guo, Z. J.; Liang, M. M. Recent progress in single-atom nanozymes research. Nano Res. 2023, 16, 1878–1889.
Wu, J. G.; Li, X.; Fu, K.; Cao, D.; Cheng, D. J. Constructing fully exposed Pt atomically dispersed catalysts for enhanced multifunctional selective hydrogenation reactions. Chem. Eng. J. 2024, 481, 148706.
Shukla, S.; Pei, Y.; Li, W. G.; Pei, D. S. Toxicological research on Nano and microplastics in environmental pollution: Current advances and future directions. Aquat. Toxicol. 2024, 270, 106894.
Mitrano, D. M.; Diamond, M. L.; Kim, J. H.; Tam, K. C.; Yang, M.; Wang, Z. Y. Balancing new approaches and harmonized techniques in nano-and microplastics research. ACS Sustain. Chem. Eng. 2023, 11, 8702–8705.
Yang, J. R.; Zhu, C. X.; Li, W. H.; Zheng, X. S.; Wang, D. S. Organocatalyst supported by a single-atom support accelerates both electrodes used in the chlor-alkali industry via modification of non-covalent interactions. Angew. Chem., Int. Ed. 2024, 63, e202314382.
Hao, Q.; Tang, Q.; Zhong, H. X.; Wang, J. Z.; Liu, D. X.; Zhang, X. B. Fully exposed nickel clusters with electron-rich centers for high-performance electrocatalytic CO2 reduction to CO. Sci. Bull. 2022, 67, 1477–1485.
Yang, J. R.; Wang, D. S.; Li, Y. D. Identifying the types and characterization of the active sites on M−X−C single-atom catalysts. ChemPhysChem 2020, 21, 2486–2496.
Zheng, T. T.; Jiang, K.; Ta, N.; Hu, Y. F.; Zeng, J.; Liu, J. Y.; Wang, H. T. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 2019, 3, 265–278.
Zhang, Y. F.; Li, Z. W.; Zhang, J. J.; Xu, L. L.; Han, Z. K.; Baiker, A.; Li, G. Nanostructured Ni-MoC x : An efficient non-noble metal catalyst for the chemoselective hydrogenation of nitroaromatics. Nano Res. 2023, 16, 8919–8928.
Zhang, Z. J.; Liu, Y.; Su, X. Z.; Zhao, Z. W.; Mo, Z. K.; Wang, C. Y.; Zhao, Y. L.; Chen, Y.; Gao, S. Y. Electro-triggered Joule heating method to synthesize single-phase CuNi nano-alloy catalyst for efficient electrocatalytic nitrate reduction toward ammonia. Nano Res. 2023, 16, 6632–6641.
Peng, J. Z.; Li, Y. L.; Cheng, Y. T.; Li, F. Z.; Cao, B.; Wang, Q.; Yue, X.; Lai, G. T.; Wang, Y. G.; Gu, J. Metal-N4 model single-atom catalyst with electroneutral quadri-pyridine macrocyclic ligand for CO2 electroreduction. Carbon Energy 2024, 6, e506.
Yuan, Y. P.; Zheng, Y.; Luo, D.; Qiu, W. B.; Wang, J. T.; Wang, X.; Chen, Z. W. Recent progress on mechanisms, principles, and strategies for high-activity and high-stability non-PGM fuel cell catalyst design. Carbon Energy 2024, 6, e426.
Yang, J. R.; Li, W. H.; Wang, D. S. Machine learning: The trends of developing high-efficiency single-atom materials. Chem Catal. 2021, 1, 24–26.
Li, L. F.; Zhu, J. M.; Kong, F. P.; Wang, Y. J.; Kang, C.; Xu, M.; Du, C. Y.; Yin, G. P. Tailoring atomic strain environment for high-performance acidic oxygen reduction by Fe–Ru dual atoms communicative effect. Matter 2024, 7, 1517–1532.
Yang, J. R.; Zhu, C. X.; Yang, C. J.; Li, W. H.; Zhou, H. Y.; Tan, S. D.; Liu, X. W.; He, D. P.; Wang, D. S. Accelerating the hydrogen production via modifying the Fermi surface. Nano Lett. 2023, 23, 11368–11375.
Chougule, S. S.; Jeffery, A. A.; Roy Chowdhury, S.; Min, J.; Kim, Y.; Ko, K.; Sravani, B.; Jung, N. Antipoisoning catalysts for the selective oxygen reduction reaction at the interface between metal nanoparticles and the electrolyte. Carbon Energy 2023, 5, e293.
Zhang, B. X.; Chen, Y. P.; Wang, J. M.; Pan, H. G.; Sun, W. P. Supported sub-nanometer clusters for electrocatalysis applications. Adv. Funct. Mater. 2022, 32, 2202227.
Gandionco, K. A.; Kim, J.; Bekaert, L.; Hubin, A.; Lim, J. Single-atom catalysts for the electrochemical reduction of carbon dioxide into hydrocarbons and oxygenates. Carbon Energy 2024, 6, e410.
Yang, J. R.; Zhu, C. X.; Wang, D. S. A simple organo-electrocatalysis system for the chlor-related industry. Angew. Chem., Int. Ed. 2024, 63, e202406883.
Hossain, M. D.; Liu, Z. J.; Zhuang, M. H.; Yan, X. X.; Xu, G. L.; Gadre, C. A.; Tyagi, A.; Abidi, I. H.; Sun, C. J.; Wong, H. et al. Rational design of graphene-supported single atom catalysts for hydrogen evolution reaction. Adv. Energy Mater. 2019, 9, 1803689.
Yang, J. R.; Pei, J. J.; Dong, J. C.; Wang, D. S. Accurate synthesis and industrial production of single-atom catalysts. Chem Catal. 2022, 2, 2111–2113.
Song, Z. X.; Li, J. J.; Zhang, Q. L.; Li, Y. L.; Ren, X. Z.; Zhang, L.; Sun, X. L. Progress and perspective of single-atom catalysts for membrane electrode assembly of fuel cells. Carbon Energy 2023, 5, e342.
Li, R. Z.; Wang, D. S. Superiority of dual-atom catalysts in electrocatalysis: One step further than single-atom catalysts. Adv. Energy Mater. 2022, 12, 2103564.
Yang, X. X.; Liang, J. S.; Shi, Q. R.; Zachman, M. J.; Kabir, S.; Liang, J. W.; Zhu, J.; Slenker, B.; Pupucevski, M.; Macauley, N. et al. Regulating the third metal to design and engineer multilayered NiFeM (M: Co, Mn, and Cu) nanofoam anode catalysts for anion-exchange membrane water electrolyzers. Adv. Energy Mater. 2024, 14, 2400029.
Chen, Y.; Lin, J.; Jia, B. H.; Wang, X. D.; Jiang, S. Y.; Ma, T. Y. Isolating single and few atoms for enhanced catalysis. Adv. Mater. 2022, 34, 2201796.
Gao, Y.; Liu, B. Z.; Wang, D. S. Microenvironment engineering of single/dual-atom catalysts for electrocatalytic application. Adv. Mater. 2023, 35, 2209654.
Zhu, Y. P.; Fan, K.; Hsu, C. S.; Chen, G.; Chen, C. S.; Liu, T. C.; Lin, Z. Z.; She, S. X.; Li, L. Q.; Zhou, H. M. et al. Supported ruthenium single-atom and clustered catalysts outperform benchmark Pt for alkaline hydrogen evolution. Adv. Mater. 2023, 35, 2301133.
Wang, J. Y.; Shao, Y. Y.; Zhu, J. Improving flow and fluidization quality of fine and ultrafine particles via nanoparticle modulation. Nano Res. 2023, 16, 12013–12025.
Sun, Z. Y.; Li, C.; Wei, Z. H.; Zhang, F.; Deng, Z. W.; Zhou, K. J.; Wang, Y.; Guo, J. H.; Yang, J. Y.; Xiang, Z. Q. et al. Sulfur-bridged asymmetric CuNi bimetallic atom sites for CO2 reduction with high efficiency. Adv. Mater. 2024, 36, 2404665.
Duan, J. J.; Chen, S.; Ortíz-Ledón, C. A.; Jaroniec, M.; Qiao, S. Z. Phosphorus vacancies that boost electrocatalytic hydrogen evolution by two orders of magnitude. Angew. Chem. 2020, 132, 8258–8263.
Pan, L.; Wang, J. N.; Lu, F.; Liu, Q.; Gao, Y. H.; Wang, Y.; Jiang, J. Z.; Sun, C.; Wang, J.; Wang, X. Single-atom or dual-atom in TiO2 nanosheet: Which is the better choice for electrocatalytic urea synthesis. Angew. Chem. 2023, 135, e202216835.
Pei, Z. H.; Lu, X. F.; Zhang, H. B.; Li, Y. X.; Luan, D. Y.; Lou, X. W. Highly efficient electrocatalytic oxygen evolution over atomically dispersed synergistic Ni/Co dual sites. Angew. Chem. 2022, 134, e202207537.
Duan, L. L.; Hung, C. T.; Wang, J. X.; Wang, C. Y.; Ma, B.; Zhang, W.; Ma, Y. Z.; Zhao, Z. W.; Yang, C. C.; Zhao, T. C. et al. Synthesis of fully exposed single-atom-layer metal clusters on 2D ordered mesoporous TiO2 nanosheets. Angew. Chem. 2022, 134, e202211307.
Zhong, J. J.; Liang, Z. H.; Liu, N.; Xiang, Y. C.; Yan, B.; Zhu, F. Y.; Xie, X.; Gui, X. C.; Gan, L. Y.; Yang, H. B. et al. Engineering symmetry-breaking centers and d-orbital modulation in triatomic catalysts for zinc-air batteries. ACS Nano 2024, 18, 5258–5269.
Deng, D. J.; Qian, J. C.; Liu, X. Z.; Li, H. P.; Su, D.; Li, H. N.; Li, H. M.; Xu, L. Non-covalent interaction of atomically dispersed Cu and Zn pair sites for efficient oxygen reduction reaction. Adv. Funct. Mater. 2022, 32, 2203471.
Yu, D. S.; Ma, Y. C.; Hu, F.; Lin, C. C.; Li, L. L.; Chen, H. Y.; Han, X. P.; Peng, S. J. Dual-sites coordination engineering of single atom catalysts for flexible metal-air batteries. Adv. Energy Mater. 2021, 11, 2101242.
Hou, C. C.; Wang, H. F.; Li, C. X.; Xu, Q. From metal-organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy Environ. Sci. 2020, 13, 1658–1693.
Wang, Z.; Jin, X. Y.; Zhu, C.; Liu, Y. P.; Tan, H.; Ku, R.; Zhang, Y. Q.; Zhou, L. J.; Liu, Z.; Hwang, S. J. et al. Atomically dispersed Co2–N6 and Fe–N4 costructures boost oxygen reduction reaction in both alkaline and acidic media. Adv. Mater. 2021, 33, 2104718.
Chai, Y. C.; Chen, S. H.; Chen, Y.; Wei, F. F.; Cao, L. R.; Lin, J.; Li, L.; Liu, X. Y.; Lin, S.; Wang, X. D. et al. Dual-atom catalyst with N-colligated Zn1Co1 species as dominant active sites for propane dehydrogenation. J. Am. Chem. Soc. 2024, 146, 263–273.
Chen, X. W.; Peng, M.; Xiao, D. Q.; Liu, H. Y.; Ma, D. Fully exposed metal clusters: Fabrication and application in alkane dehydrogenation. ACS Catal. 2022, 12, 12720–12743.
Chen, W. M.; Yao, Z.; Chen, W. X.; Shen, Q. K.; Yuan, D. S.; Zhang, C.; Zhu, Y. F.; Liang, H. W.; Wang, Y. G.; Song, W. G. et al. Fully exposed iridium clusters enable efficient hydrogenation of N-heteroarenes. ACS Catal. 2023, 13, 12153–12162.
Fan, Z. Z.; Luo, R. C.; Zhang, Y. X.; Zhang, B.; Zhai, P. L.; Zhang, Y. T.; Wang, C.; Gao, J. F.; Zhou, W.; Sun, L. C. et al. Oxygen-bridged indium-nickel atomic pair as dual-metal active sites enabling synergistic electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202216326.
Jia, Z. M.; Peng, M.; Cai, X. B.; Chen, Y. L.; Chen, X. W.; Huang, F.; Zhao, L. M.; Diao, J. Y.; Wang, N.; Xiao, D. Q. et al. Fully exposed platinum clusters on a nanodiamond/graphene hybrid for efficient low-temperature CO oxidation. ACS Catal. 2022, 12, 9602–9610.
Zhang, W. X.; Zhang, M. R.; Wang, H. J.; Zhang, W.; Zhang, M. Diatomic Pd catalyst with conjugated backbone for synergistic electrochemical CO2 reduction. Nano Res. 2024, 17, 4850–4855.
Xu, Y. X.; Wang, C.; Li, X. Y.; Xiong, L. Q.; Zhang, T. Y.; Zhang, L. Q.; Zhang, Q. H.; Gu, L.; Lan, Y.; Tang J. W. Efficient methane oxidation to formaldehyde via photon-phonon cascade catalysis. Nat. Sustain. 2024, 7, 1171–1181.
Yue, X. Y.; Cheng, L.; Guan, C.; Liao, Y. L.; Xu, Z. H.; Ostrikov, K. K.; Xiang, Q. J. In-plane palladium and interplanar copper dual single-atom catalyst in bulk-like carbon nitride for cascade CO2 photoreduction. Small 2024, 20, 2308767.
Hao, Q.; Zhong, H. X.; Wang, J. Z.; Liu, K. H.; Yan, J. M.; Ren, Z. H.; Zhou, N.; Zhao, X.; Zhang, H.; Liu, D. X. et al. Nickel dual-atom sites for electrochemical carbon dioxide reduction. Nat. Synth. 2022, 1, 719–728.
Zhang, Q. C.; Liu, D.; Zhang, Y. P.; Guo, Z. L.; Chen, M. P.; Chen, Y. Y.; Jin, B.; Song, Y. Z.; Pan, H. Insight into coupled Ni–Co dual-metal atom catalysts for efficient synergistic electrochemical CO2 reduction. J. Energy Chem. 2023, 87, 509–517.
Jiao, J. Q.; Yuan, Q.; Tan, M. J.; Han, X. Q.; Gao, M. B.; Zhang, C.; Yang, X.; Shi, Z. L.; Ma, Y. B.; Xiao, H. et al. Constructing asymmetric double-atomic sites for synergistic catalysis of electrochemical CO2 reduction. Nat. Commun. 2023, 14, 6164.
Pei, J. J.; Yang, L.; Lin, J.; Zhang, Z. D.; Sun, Z. Y.; Wang, D. S.; Chen, W. X. Integrating host design and tailored electronic effects of yolk-shell Zn−Mn diatomic sites for efficient CO2 electroreduction. Angew. Chem. 2024, 136, e202316123.
Zhao, K.; Nie, X. W.; Wang, H. Z.; Chen, S.; Quan, X.; Yu, H. T.; Choi, W.; Zhang, G. H.; Kim, B.; Chen, J. G. Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nat. Commun. 2020, 11, 2455.
Shao, P.; Zhou, W.; Hong, Q. L.; Yi, L. C.; Zheng, L. R.; Wang, W. J.; Zhang, H. X.; Zhang, H. B.; Zhang, J. Synthesis of a boron-imidazolate framework nanosheet with dimer copper units for CO2 electroreduction to ethylene. Angew. Chem., Int. Ed. 2021, 60, 16687–16692.
Xu, H. P.; Rebollar, D.; He, H. Y.; Chong, L. N.; Liu, Y. Z.; Liu, C.; Sun, C. J.; Li, T.; Muntean, J. V.; Winans, R. E. et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 2020, 5, 623–632.
Yang, T.; Lin, L.; Lv, X. M.; Yang, H. C.; Feng, H. S.; Huang, Z. L.; Li, J. W.; Pao, C. W.; Hu, Z. W.; Zhan, C. H. et al. Interfacial synergy between the Cu atomic layer and CeO2 promotes CO electrocoupling to acetate. ACS Nano 2023, 17, 8521–8529.
Kour, G.; Mao, X.; Du, A. J. A highly efficient conjoined-twin porphyrin-based complex for the electrochemical reduction of CO to ethanol. ChemNanoMat 2021, 7, 935–941.
Musgrave III, C. B.; Li, Y. Y.; Luo, Z. T.; Goddard, W. A. Dual atom catalysts for rapid electrochemical reduction of CO to ethylene. Nano Energy 2023, 118, 108966.
Hao, Z. C.; Ma, L. J.; Jia, J. F.; Wu, H. S. Metal-free B4@gC3N4: A potential electrocatalyst for highly selective and efficient conversion of CO to ethanol. J. Mater. Chem. A 2023, 11, 18365–18374.
Xie, W. F.; Li, H.; Cui, G. Q.; Li, J. B.; Song, Y. K.; Li, S. J.; Zhang, X.; Lee, J. Y.; Shao, M. F.; Wei, M. NiSn atomic pair on an integrated electrode for synergistic electrocatalytic CO2 reduction. Angew. Chem. 2021, 133, 7458–7464.
Jiang, J.; Sun, F. F.; Zhou, S.; Hu, W.; Zhang, H.; Dong, J. C.; Jiang, Z.; Zhao, J. J.; Li, J. F.; Yan, W. S. et al. Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide. Nat. Commun. 2018, 9, 2885.
Zhang, S.; Wu, J. H.; Zheng, M. T.; Jin, X.; Shen, Z. H.; Li, Z. H.; Wang, Y. J.; Wang, Q.; Wang, X. B.; Wei, H. et al. Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia. Nat. Commun. 2023, 14, 3634.
Wang, X. K.; Xu, L. L.; Li, C.; Zhang, C. H.; Yao, H. X.; Xu, R.; Cui, P. X.; Zheng, X. S.; Gu, M.; Lee, J. et al. Developing a class of dual atom materials for multifunctional catalytic reactions. Nat. Commun. 2023, 14, 7210.
Zhao, Y. S.; Wan, J. W.; Yao, H. Y.; Zhang, L. J.; Lin, K. F.; Wang, L.; Yang, N. L.; Liu, D. B.; Song, L.; Zhu, J. et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 2018, 10, 924–931.
Han, L. L.; Cheng, H.; Liu, W.; Li, H. Q.; Ou, P. F.; Lin, R. Q.; Wang, H. T.; Pao, C. W.; Head, A. R.; Wang, C. H. et al. A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nat. Mater. 2022, 21, 681–688.
Li, C. G.; Paris, C.; Martínez-Triguero, J.; Boronat, M.; Moliner, M.; Corma, A. Synthesis of reaction-adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure-directing agents. Nat. Catal. 2018, 1, 547–554.
Jeong, H.; Kwon, O.; Kim, B. S.; Bae, J.; Shin, S.; Kim, H. E.; Kim, J.; Lee, H. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat. Catal. 2020, 3, 368–375.
Dong, C. Y.; Gao, Z. R.; Li, Y. L.; Peng, M.; Wang, M.; Xu, Y.; Li, C. Y.; Xu, M.; Deng, Y. C.; Qin, X. T. et al. Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles. Nat. Catal. 2022, 5, 485–493.
Liu, Q.; Tang, T.; Tian, Z.; Ding, S.; Wang, L.; Chen, D.; Wang, Z.; Zheng, W.; Lee, H.; Lu, X. et al. A high-performance watermelon skin ion-solvating membrane for electrochemical CO2 reduction. Nat. Commun. 2024, 15, 6722.
Zhang, H.; Cao, Y. J.; Sun, M.; Liu, Y.; Wang, Y.; Li, H. R.; Zhang, R. G.; Gu, X. J.; Zeng, S. H. Heterobimetallic praseodymium-nickel active sites with Pr–N4C2 and Ni–N4 moieties enabling synergistic catalysis of CO2 electroreduction. Chem. Eng. J. 2024, 490, 151706.
Huang, K.; Li, R.; Qi, H. D.; Yang, S.; An, S. H.; Lian, C.; Xu, Q.; Liu, H. L.; Hu, J. Regulating adsorption of intermediates via the sulfur modulating dual-atomic sites for boosting CO2RR. ACS Catal. 2024, 14, 8889–8898.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See https://creativecommons.org/licenses/by/4.0/.