AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (33.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Regulation of cobalt active sites by antimony to match adsorption configuration for propyne semihydrogenation

Xiaohu Ge1Ziyue Kou1Nina Fei1Yueqiang Cao1 ( )Hao Jiang2Xinggui Zhou1Xuezhi Duan1 ( )
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
Show Author Information

Graphical Abstract

Catalytic hydrogenation pathways, exemplified by propyne semihydrogenation, are regulated by constructing a CoSb intermetallic catalyst. The Co active sites, tailored by high-electronegativity Sb sites, suppress strong σadsorption and facilitate weak π-adsorption of propylene, thereby enhancing propyne semihydrogenation.

Abstract

Designing and fabricating atomically uniform active sites toward favorable adsorption configuration of essential species to match specific reaction pathways is of great importance in catalytic semihydrogenations, yet it remains challenging. In this research, we present a straightforward method for synthesizing a CoSb intermetallic catalyst through the structural conversion of layered double hydroxide precursors, optimizing Co sites for configuration matching in propyne semihydrogenation. Characterizations using X-ray diffraction, high resolution transmission electron microscopy, and X-ray absorption spectroscopy demonstrate the formation of P63/mmc CoSb intermetallic phase. The CoSb intermetallic catalyst, with its well-organized atomic surface and optimized electronic structure, achieves 97.0% propylene selectivity with nearly complete propyne conversion. Temperature-programmed surface reaction and desorption measurements, along with theoretical calculations, unravel that this exceptional selectivity arises from the kinetically preferred desorption of propylene over its further hydrogenation to undesired propane byproduct on the finely regulated Co sites of the CoSb intermetallic catalyst.

Electronic Supplementary Material

Download File(s)
0020_ESM.pdf (4.2 MB)

References

[1]

Gu, J.; Jian, M. Z.; Huang, L.; Sun, Z. H.; Li, A. W.; Pan, Y.; Yang, J. Z.; Wen, W.; Zhou, W.; Lin, Y. et al. Synergizing metal-support interactions and spatial confinement boosts dynamics of atomic nickel for hydrogenations. Nat. Nanotechnol. 2021, 16, 1141–1149.

[2]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[3]

Gao, R. J.; Xu, J. S.; Wang, J.; Lim, J.; Peng, C.; Pan, L.; Zhang, X. W.; Yang, H. M.; Zou, J. J. Pd/Fe2O3 with electronic coupling single-site Pd–Fe pair sites for low-temperature semihydrogenation of alkynes. J. Am. Chem. Soc. 2022, 144, 573–581.

[4]

Liu, Y. N.; Zhao, J. Y.; Feng, J. T.; He, Y. F.; Du, Y. Y.; Li, D. Q. Layered double hydroxide-derived Ni–Cu nanoalloy catalysts for semi-hydrogenation of alkynes: Improvement of selectivity and anti-coking ability via alloying of Ni and Cu. J. Catal. 2018, 359, 251–260.

[5]

Cao, Y. Q.; Sui, Z.; Zhu, Y. A.; Zhou, X. G.; Chen, D. Selective hydrogenation of acetylene over Pd–In/Al2O3 catalyst: Promotional effect of indium and composition-dependent performance. ACS Catal. 2017, 7, 7835–7846.

[6]

Yan, K. L.; Ge, X. H.; Li, W. H.; Liang, Y. J.; Xiong, W. J.; Zhang, J.; Qian, G.; Chen, D.; Cao, Y. Q.; Zhou, X. G. et al. Regulation of a Ni3Sn2 intermetallic catalyst using highly dispersed Pd species to boost propyne semi-hydrogenation. J. Mater. Chem. A 2024, 12, 16482–16490.

[7]

Yuwen, Q.; Yan, K. L.; Ge, X. H.; Qian, G.; Zhang, J.; Cao, Y. Q.; Zhou, X. G.; Duan, X. Z. Atomically dispersed palladium to enhance the propyne semihydrogenation over CeO2 catalysts. Ind. Eng. Chem. Res. 2023, 62, 16280–16290.

[8]

Chu, M. Y.; Pan, Q.; Bian, W. Y.; Liu, Y.; Cao, M. H.; Zhang, C. Y.; Lin, H. P.; Zhang, Q.; Xu, Y. Strong metal-support interaction between palladium and gallium oxide within monodisperse nanoparticles: Self-supported catalysts for propyne semi-hydrogenation. J. Catal. 2021, 395, 36–45.

[9]

Ge, X. H.; Cao, Y. Q.; Yan, K. L.; Li, Y. R.; Zhou, L. H.; Dai, S.; Zhang, J.; Gong, X. Q.; Qian, G.; Zhou, X. G. et al. Increasing the distance of adjacent palladium atoms for configuration matching in selective hydrogenation. Angew. Chem., Int. Ed. 2022, 61, e202215225.

[10]

Ge, X. H.; Yin, J.; Ren, Z. H.; Yan, K. L.; Jing, Y. D.; Cao, Y. Q.; Fei, N. N.; Liu, X.; Wang, X. N.; Zhou, X. G. et al. Atomic design of alkyne semihydrogenation catalysts via active learning. J. Am. Chem. Soc. 2024, 146, 4993–5004.

[11]

Xi, J. H.; Yan, K. L.; Zhu, N. C.; Ge, X. H.; Yuwen, Q.; Chen, M. M.; Jiang, H.; Cao, Y. Q.; Zhou, X. G.; Duan, X. Z. Ni active sites isolated by antimony toward enhanced propyne semihydrogenation. AIChE J. 2024, 70, e18416.

[12]

Feng, Q. C.; Zhao, S.; Wang, Y.; Dong, J. C.; Chen, W. X.; He, D. S.; Wang, D. S.; Yang, J.; Zhu, Y. M.; Zhu, H. L. et al. Isolated single-atom Pd sites in intermetallic nanostructures: High catalytic selectivity for semihydrogenation of alkynes. J. Am. Chem. Soc. 2017, 139, 7294–7301.

[13]

Cao, Y. Q.; Zhang, H.; Ji, S. F.; Sui, Z.; Jiang, Z.; Wang, D. S.; Zaera, F.; Zhou, X. G.; Duan, X. Z.; Li, Y. D. Adsorption site regulation to guide atomic design of Ni–Ga catalysts for acetylene semi-hydrogenation. Angew. Chem., Int. Ed. 2020, 59, 11647–11652.

[14]

Huang, F.; Peng, M.; Chen, Y. L.; Cai, X. B.; Qin, X. T.; Wang, N.; Xiao, D. Q.; Jin, L.; Wang, G. Q.; Wen, X. D. et al. Low-temperature acetylene semi-hydrogenation over the Pd1–Cu1 dual-atom catalyst. J. Am. Chem. Soc. 2022, 144, 18485–18493.

[15]

Ge, X. H.; Ren, Z. H.; Cao, Y. Q.; Liu, X.; Zhang, J.; Qian, G.; Gong, X. Q.; Chen, L. W.; Zhou, X. G.; Yuan, W. K. et al. Enhanced acetylene semihydrogenation on a subsurface carbon tailored Ni–Ga intermetallic catalyst. J. Mater. Chem. A 2022, 10, 19722–19731.

[16]

Zhang, W. Q.; Zhang, X. B.; Wang, J. Y.; Ghosh, A.; Zhu, J.; LiBretto, N. J.; Zhang, G. H.; Datye, A. K.; Liu, W.; Miller, J. T. Bismuth-modulated surface structural evolution of Pd3Bi intermetallic alloy catalysts for selective propane dehydrogenation and acetylene semihydrogenation. ACS Catal. 2022, 12, 10531–10545.

[17]

Wang, M. L.; Liang, L. L.; Liu, X.; Sun, Q.; Guo, M. R.; Bai, S. X.; Xu, Y. Selective semi-hydrogenation of alkynes on palladium-selenium nanocrystals. J. Catal. 2023, 418, 247–255.

[18]

He, Y. F.; Fan, J. X.; Feng, J. T.; Luo, C. Y.; Yang, P. F.; Li, D. Q. Pd nanoparticles on hydrotalcite as an efficient catalyst for partial hydrogenation of acetylene: Effect of support acidic and basic properties. J. Catal. 2015, 331, 118–127.

[19]

Yang, Y. S.; Rao, D. M.; Chen, Y. D.; Dong, S. Y.; Wang, B.; Zhang, X.; Wei, M. Selective hydrogenation of cinnamaldehyde over Co-based intermetallic compounds derived from layered double hydroxides. ACS Catal. 2018, 8, 11749–11760.

[20]

Ge, X. H.; Dou, M. Y.; Cao, Y. Q.; Liu, X.; Yuwen, Q.; Zhang, J.; Qian, G.; Gong, X. Q.; Zhou, X. G.; Chen, L. W. et al. Mechanism driven design of trimer Ni1Sb2 site delivering superior hydrogenation selectivity to ethylene. Nat. Commun. 2022, 13, 5534.

[21]

Dietrich, P. J.; Akatay, M. C.; Sollberger, F. G.; Stach, E. A.; Miller, J. T.; Delgass, W. N.; Ribeiro, F. H. Effect of Co loading on the activity and selectivity of PtCo aqueous phase reforming catalysts. ACS Catal. 2014, 4, 480–491.

[22]

Park, M. G.; Song, J. H.; Sohn, J. S.; Lee, C. K.; Park, C. M. Co–Sb intermetallic compounds and their disproportionated nanocomposites as high-performance anodes for rechargeable Li-ion batteries. J. Mater. Chem. A 2014, 2, 11391–11399.

[23]

Ma, C. Q.; Zhang, H. F.; Xia, J.; Zhu, X. J.; Qu, K. Y.; Feng, F. K.; Han, S. M.; He, C. H.; Ma, X.; Lin, G. et al. Screening of intermetallic compounds based on intermediate adsorption equilibrium for electrocatalytic nitrate reduction to ammonia. J. Am. Chem. Soc. 2024, 146, 20069–20079.

[24]

Fan, G. L.; Xu, W. C.; Li, J. H.; Chen, J. L.; Yu, M.; Ni, Y. X.; Zhu, S. L.; Su, X. C.; Cheng, F. Y. Nanoporous NiSb to enhance nitrogen electroreduction via tailoring competitive adsorption sites. Adv. Mater. 2021, 33, 2101126.

[25]

Melloni, G.; Modena, G.; Tonellato, U. Relative reactivities of carbon-carbon double and triple bonds toward electrophiles. Acc. Chem. Res. 1981, 14, 227–233.

[26]

Ge, X. H.; Jing, Y. D.; Fei, N. N.; Yan, K. L.; Liang, Y. J.; Cao, Y. Q.; Zhang, J.; Qian, G.; Li, L. N.; Jiang, H. et al. Embedding single Pd atoms on NiGa intermetallic surfaces for efficient and selective alkyne hydrogenation. Angew. Chem., Int. Ed. 2024, 5, e202410979.

[27]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[28]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[29]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[30]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[31]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[32]

Kästner, J.; Sherwood, P. Superlinearly converging dimer method for transition state search. J. Chem. Phys. 2008, 128, 014106.

[33]

Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter 2009, 21, 084204.

Carbon Future
Article number: 9200020
Cite this article:
Ge X, Kou Z, Fei N, et al. Regulation of cobalt active sites by antimony to match adsorption configuration for propyne semihydrogenation. Carbon Future, 2024, 1(3): 9200020. https://doi.org/10.26599/CF.2024.9200020

682

Views

178

Downloads

0

Crossref

Altmetrics

Received: 06 August 2024
Revised: 20 September 2024
Accepted: 25 September 2024
Published: 29 September 2024
© The Author(s) 2024.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See https://creativecommons.org/licenses/by/4.0/.

Return