Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Hydrogen peroxide (H2O2) is a widely utilized chemical in environmental cleaning, medical disinfection, and chemical engineering. Compared to the traditional anthraquinone oxidation method, the electrocatalytic oxygen reduction reaction (ORR) has become a promising alternative following the trends towards decentralized production schemes for base chemicals as well as the implementation of renewable energy sources to drive chemical reactions. ORR is attractive for the production of H2O2 due to its environmental friendliness, safety, and reliability. However, its wider application is still restricted by the sluggish reaction kinetics and low selectivity due to the competitive reaction of the oxygen reduction to H2O. In this context, nitrogen-rich carbon electrocatalysts with tunable adsorption properties and high electrical conductivity are promising materials for improved selectivity. A precise tailoring of their chemical structure is however required to embed peroxide-producing catalytic sites within a conductive environment. Herein, a metal-free carbon-nitrogen (CN)-type nanoporous carbon loaded onto a carbon matrix (CN@C) was designed as an ORR catalyst for highly selective peroxide synthesis in alkaline media. An average electron transfer number of 2.2 has been determined by the Koutecký–Levich analysis, indicating that CN@C materials exhibit a high selectivity for electrochemical H2O2 synthesis.
Brillas, E.; Sirés, I.; Oturan, M. A. Electro-fenton process and related electrochemical technologies based on fenton’s reaction chemistry. Chem. Rev. 2009, 109, 6570–6631.
Wang, K.; Huang, J. H.; Chen, H. X.; Wang, Y.; Song, S. Q. Recent advances in electrochemical 2e oxygen reduction reaction for on-site hydrogen peroxide production and beyond. Chem. Commun. 2020, 56, 12109–12121.
Wang, N.; Ma, S. B.; Zuo, P. J.; Duan, J. Z.; Hou, B. R. Recent progress of electrochemical production of hydrogen peroxide by two-electron oxygen reduction reaction. Adv. Sci. 2021, 8, 2100076.
Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem., Int. Ed. 2006, 45, 6962–6984.
Wang, Y. L.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. R. Electrocatalytic oxygen reduction to hydrogen peroxide: From homogeneous to heterogeneous electrocatalysis. Adv. Energy Mater. 2021, 11, 2003323.
Dan, M.; Zhong, R. Y.; Hu, S. Y.; Wu, H. X.; Zhou, Y.; Liu, Z. Q. Strategies and challenges on selective electrochemical hydrogen peroxide production: Catalyst and reaction medium design. Chem Catal. 2022, 2, 1919–1960.
Xia, C.; Kim, J. Y.; Wang, H. T. Recommended practice to report selectivity in electrochemical synthesis of H2O2. Nat. Catal. 2020, 3, 605–607.
Zheng, Z. K.; Ng, Y. H.; Wang, D. W.; Amal, R. Epitaxial growth of Au–Pt–Ni nanorods for direct high selectivity H2O2 production. Adv. Mater. 2016, 28, 9949–9955.
Chang, Q. W.; Zhang, P.; Mostaghimi, A. H. B.; Zhao, X. R.; Denny, S. R.; Lee, J. H.; Gao, H. P.; Zhang, Y.; Xin, H. L.; Siahrostami, S. et al. Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon. Nat. Commun. 2020, 11, 2178.
Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Toward the decentralized electrochemical production of H2O2: A focus on the catalysis. ACS Catal. 2018, 8, 4064–4081.
Jiang, Y. Y.; Ni, P. J.; Chen, C. X.; Lu, Y. Z.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy Mater. 2018, 8, 1801909.
Priyadarsini, A.; Mallik, B. S. Effects of doped N, B, P, and S atoms on graphene toward oxygen evolution reactions. ACS Omega 2021, 6, 5368–5378.
Choi, C. H.; Lim, H. K.; Chung, M. W.; Chon, G.; Sahraie, N. R.; Altin, A.; Sougrati, M. T.; Stievano, L.; Oh, H. S.; Park, E. S. et al. The Achilles’ heel of iron-based catalysts during oxygen reduction in an acidic medium. Energy Environ. Sci. 2018, 11, 3176–3182.
Ehlert, C.; Piras, A.; Schleicher, J.; Gryn’ova, G. Metal-free molecular catalysts for the oxygen reduction reaction: Electron affinity as an activity descriptor. J. Phys. Chem. Lett. 2023, 14, 476–480.
Wu, B.; Meng, H. B.; Morales, D. M.; Zeng, F.; Zhu, J. J.; Wang, B.; Risch, M.; Xu, Z. J.; Petit, T. Nitrogen-rich carbonaceous materials for advanced oxygen electrocatalysis: Synthesis, characterization, and activity of nitrogen sites. Adv. Funct. Mater. 2022, 32, 2204137.
Zhang, W. Y.; Zhan, S. Q.; Qin, Q.; Heil, T.; Liu, X. Y.; Hwang, J.; Ferber, T. H.; Hofmann, J. P.; Oschatz, M. Electrochemical generation of catalytically active edge sites in C2N-type carbon materials for artificial nitrogen fixation. Small 2022, 18, 2204116.
Kazakova, M. A.; Koul, A.; Golubtsov, G. V.; Selyutin, A. G.; Ishchenko, A. V.; Kvon, R. I.; Kolesov, B. A.; Schuhmann, W.; Morales, D. M. Nitrogen and oxygen functionalization of multi-walled carbon nanotubes for tuning the bifunctional oxygen reduction/oxygen evolution performance of supported FeCo oxide nanoparticles. ChemElectroChem 2021, 8, 2803–2816.
Zhang, L. P.; Niu, J. B.; Dai, L. M.; Xia, Z. H. Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells. Langmuir 2012, 28, 7542–7550.
Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. J.; Baek, J. B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892.
Perovic, M.; Qin, Q.; Oschatz, M. From molecular precursors to nanoparticles-tailoring the adsorption properties of porous carbon materials by controlled chemical functionalization. Adv. Funct. Mater. 2020, 30, 1908371.
Borchardt, L.; Zhu, Q. L.; Casco, M. E.; Berger, R.; Zhuang, X. D.; Kaskel, S.; Feng, X. L.; Xu, Q. Toward a molecular design of porous carbon materials. Mater. Today 2017, 20, 592–610.
Walczak, R.; Kurpil, B.; Savateev, A.; Heil, T.; Schmidt, J.; Qin, Q.; Antonietti, M.; Oschatz, M. Template- and metal-free synthesis of nitrogen-rich nanoporous “noble” carbon materials by direct pyrolysis of a preorganized hexaazatriphenylene precursor. Angew. Chem., Int. Ed. 2018, 57, 10765–10770.
Wu, B.; Amargianou, F.; Förster, J. D.; Pöhlker, C.; Rauch, T. G.; Wong, D.; Schulz, C.; Seidel, R.; Weigand, M.; Oschatz, M. et al. Water confinement in nitrogen-rich nanoporous carbon materials revealed by in situ scanning transmission X-ray microscopy. Adv. Funct. Mater., 2024, 34, 2406528.
Hwang, J.; Zhang, W. Y.; Youk, S.; Schutjajew, K.; Oschatz, M. Understanding structure-property relationships under experimental conditions for the optimization of lithium-ion capacitor anodes based on all-carbon-composite materials. Energy Technol. 2021, 9, 2001054.
Wang, X. F.; Liu, T. Y.; Li, H. T.; Han, C.; Su, P. P.; Ta, N.; Jiang, S. P.; Kong, B.; Liu, J.; Huang, Z. G. Balancing mass transfer and active sites to improve electrocatalytic oxygen reduction by B,N codoped C nanoreactors. Nano Lett. 2023, 23, 4699–4707.
Sakaushi, K.; Fellinger, T. P.; Antonietti, M. Bifunctional metal-free catalysis of mesoporous noble carbons for oxygen reduction and evolution reactions. ChemSusChem 2015, 8, 1156–1160.
Banerjee, S.; Anayah, R. I.; Gerke, C. S.; Thoi, V. S. From molecules to porous materials: Integrating discrete electrocatalytic active sites into extended frameworks. ACS Cent. Sci. 2020, 6, 1671–1684.
Storck, S.; Bretinger, H.; Maier, W. F. Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Appl. Catal. A: Gen. 1998, 174, 137–146.
Connor, P.; Schuch, J.; Kaiser, B.; Jaegermann, W. The determination of electrochemical active surface area and specific capacity revisited for the system MnO x as an oxygen evolution catalyst. Z. Phys. Chem. 2020, 234, 979–994.
Han, G. Q.; Liu, Y. R.; Hu, W. H.; Dong, B.; Li, X.; Shang, X.; Chai, Y. M.; Liu, Y. Q.; Liu, C. G. Crystallographic structure and morphology transformation of MnO2 nanorods as efficient electrocatalysts for oxygen evolution reaction. J. Electrochem. Soc. 2016, 163, H67–H73.
Morales, D. M.; Risch, M. Seven steps to reliable cyclic voltammetry measurements for the determination of double layer capacitance. J. Phys.: Energy 2021, 3, 034013.
Mayrhofer, K. J. J.; Strmcnik, D.; Blizanac, B. B.; Stamenkovic, V.; Arenz, M.; Markovic, N. M. Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts. Electrochim. Acta 2008, 53, 3181–3188.
Chen, W. L.; Xiang, Q.; Peng, T.; Song, C. Y.; Shang, W.; Deng, T.; Wu, J. B. Reconsidering the benchmarking evaluation of catalytic activity in oxygen reduction reaction. iScience 2020, 23, 101532.
Jeon, I. Y.; Zhang, S.; Zhang, L. P.; Choi, H. J.; Seo, J. M.; Xia, Z. H.; Dai, L. M.; Baek, J. B. Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: The electron spin effect. Adv. Mater. 2013, 25, 6138–6145.
Unni, S. M.; Ramadas, S.; Illathvalappil, R.; Bhange, S. N.; Kurungot, S. Surface-modified single wall carbon nanohorn as an effective electrocatalyst for platinum-free fuel cell cathodes. J. Mater. Chem. A 2015, 3, 4361–4367.
Liu, X. E.; Dai, L. M. Carbon-based metal-free catalysts. Nat. Rev. Mater. 2016, 1, 16064.
Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. T. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 2019, 366, 226–231.
Iglesias, D.; Giuliani, A.; Melchionna, M.; Marchesan, S.; Criado, A.; Nasi, L.; Bevilacqua, M.; Tavagnacco, C.; Vizza, F.; Prato, M. et al. N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2. Chem 2018, 4, 106–123.
Behan, J. A.; Mates-Torres, E.; Stamatin, S. N.; Domínguez, C.; Iannaci, A.; Fleischer, K.; Hoque, M. K.; Perova, T. S.; García-Melchor, M.; Colavita, P. E. Untangling cooperative effects of pyridinic and graphitic nitrogen sites at metal-free N-doped carbon electrocatalysts for the oxygen reduction reaction. Small 2019, 15, 1902081.
Chen, S.; Bi, J. Y.; Zhao, Y.; Yang, L. J.; Zhang, C.; Ma, Y. W.; Wu, Q.; Wang, X. Z.; Hu, Z. Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv. Mater. 2012, 24, 5593–5597.
Ferrero, G. A.; Fuertes, A. B.; Sevilla, M.; Titirici, M. M. Efficient metal-free N-doped mesoporous carbon catalysts for ORR by a template-free approach. Carbon 2016, 106, 179–187.
Zhou, T. S.; Zhou, Y.; Ma, R. G.; Zhou, Z. Z.; Liu, G. H.; Liu, Q.; Zhu, Y. F.; Wang, J. C. Nitrogen-doped hollow mesoporous carbon spheres as a highly active and stable metal-free electrocatalyst for oxygen reduction. Carbon 2017, 114, 177–186.
Zhao, A. Q.; Masa, J.; Muhler, M.; Schuhmann, W.; Xia, W. N-doped carbon synthesized from N-containing polymers as metal-free catalysts for the oxygen reduction under alkaline conditions. Electrochim. Acta 2013, 98, 139–145.
Yang, M.; Liu, Y. J.; Chen, H. B.; Yang, D. G.; Li, H. M. Porous N-doped carbon prepared from triazine-based polypyrrole network: A highly efficient metal-free catalyst for oxygen reduction reaction in alkaline electrolytes. ACS Appl. Mater. Interfaces 2016, 8, 28615–28623.
Silva, R.; Voiry, D.; Chhowalla, M.; Asefa, T. Efficient metal-free electrocatalysts for oxygen reduction: Polyaniline-derived N-and O-doped mesoporous carbons. J. Am. Chem. Soc. 2013, 135, 7823–7826.
Jia, J.; Li, J. L.; Ma, S.; Zhang, Z. W.; Liu, X. M. Metal-free covalent organic frameworks for electrocatalytic oxygen reduction reaction. Macromol. Rapid Commun. 2023, 44, 2200717.
Yan, R. Y.; Leus, K.; Hofmann, J. P.; Antonietti, M.; Oschatz, M. Porous nitrogen-doped carbon/carbon nanocomposite electrodes enable sodium ion capacitors with high capacity and rate capability. Nano Energy 2020, 67, 104240.
Jin, Z. P.; Nie, H. G.; Yang, Z.; Zhang, J.; Liu, Z.; Xu, X. J.; Huang, S. M. Metal-free selenium doped carbon nanotube/graphene networks as a synergistically improved cathode catalyst for oxygen reduction reaction. Nanoscale 2012, 4, 6455–6460.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See https://creativecommons.org/licenses/by/4.0/.