Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The chlor-alkali process is a cornerstone of the chemical industry. The development of dimensionally stable anodes (DSAs) has revolutionized the chlor-alkali industry by significantly improving the efficiency and stability of chlorine production. Originally designed to address the limitations of graphite and platinum anodes, DSAs are composed of titanium substrates coated with mixed metal oxides, such as ruthenium and titanium oxides, which offer superior catalytic stability and corrosion resistance. This perspective explores the historical evolution of DSAs, their intrinsic properties, and performance benefits, emphasizing the pivotal role of the gas-bubble effect in reducing cell voltage and subsequently reducing energy consumption. The development of DSA provides a clear example of how optimizing catalyst composition, refining the preparation process, and managing gas bubble dynamics can significantly enhance the stability and efficiency of industrial electrochemical systems. These critical insights can extend to other important electrochemical processes, such as water electrolysis and fuel cells. This perspective identifies the need for standardized stability testing protocols to enhance the evaluation of catalyst durability.
Li, K.; Fan, Q.; Chuai, H.; Liu, H.; Zhang, S.; Ma, X. B. Revisiting chlor-alkali electrolyzers: From materials to devices. Trans. Tianjin Univ. 2021, 27, 202–216.
Zeradjanin, A. R. The era of stable electrocatalysis. Nat. Catal. 2023, 6, 458–459.
Deng, Z. L.; Xu, S. Y.; Liu, C. H.; Zhang, X. Q.; Li, M. F.; Zhao, Z. P. Stability of dimensionally stable anode for chlorine evolution reaction. Nano Res. 2024, 17, 949–959.
Beer, H. B. The invention and industrial development of metal anodes. J. Electrochem. Soc. 1980, 127, 303C–307C.
Wu, H.; Huang, Q. X.; Shi, Y. Y.; Chang, J. W.; Lu, S. Y. Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Res. 2023, 16, 9142–9157.
Zhai, Y. J.; Han, P.; Yun, Q. B.; Ge, Y. Y.; Zhang, X.; Chen, Y.; Zhang, H. Phase engineering of metal nanocatalysts for electrochemical CO2 reduction. eScience 2022, 2, 467–485.
Fu, X. B.; Pedersen, J. B.; Zhou, Y. Y.; Saccoccio, M.; Li, S. F.; Sažinas, R.; Li, K.; Andersen, S. Z.; Xu, A. N.; Deissler, N. H. et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science 2023, 379, 707–712.
Trasatti, S. Electrocatalysis: Understanding the success of DSA®. Electrochim. Acta 2000, 45, 2377–2385.
Trasatti, S.; Buzzanca, G. Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour. J. Electroanal. Chem. Interfacial Electrochem. 1971, 29, A1–A5.
De Nora, I. O. Anwendung maßbeständiger aktivierter Titan-Anoden bei der chloralkali-elektrolyse. Chem. Ing. Tech. 1970, 42, 222–226.
Yin, W. N.; Cai, Y. T.; Xie, L. B.; Huang, H.; Zhu, E. C.; Pan, J. A.; Bu, J. Q.; Chen, H.; Yuan, Y.; Zhuang, Z. C. et al. Revisited electrochemical gas evolution reactions from the perspective of gas bubbles. Nano Res. 2023, 16, 4381–4398.
Zhao, X.; Ren, H.; Luo, L. Gas bubbles in electrochemical gas evolution reactions. Langmuir 2019, 35, 5392–5408.
Angulo, A.; van der Linde, P.; Gardeniers, H.; Modestino, M.; Rivas, D. F. Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule 2020, 4, 555–579.
Xu, W. W.; Lu, Z. Y.; Sun, X. M.; Jiang, L.; Duan, X. Superwetting electrodes for gas-involving electrocatalysis. Acc. Chem. Res. 2018, 51, 1590–1598.
Kempler, P. A.; Coridan, R. H.; Luo, L. Gas evolution in water electrolysis. Chem. Rev. 2024, 124, 10964–11007.
Iwata, R.; Zhang, L. N.; Wilke, K. L.; Gong, S.; He, M. F.; Gallant, B. M.; Wang, E. N. Bubble growth and departure modes on wettable/non-wettable porous foams in alkaline water splitting. Joule 2021, 5, 887–900.
Park, S.; Liu, L. H.; Demirkır, Ç.; van der Heijden, O.; Lohse, D.; Krug, D.; Koper, M. T. M. Solutal marangoni effect determines bubble dynamics during electrocatalytic hydrogen evolution. Nat. Chem. 2023, 15, 1532–1540.
Kamat, G. A.; Stevens, M. B. Electrolyte type affects electrochemical bubble formation. Nat. Chem. 2023, 15, 1488–1489.
Ehelebe, K.; Escalera-López, D.; Cherevko, S. Limitations of aqueous model systems in the stability assessment of electrocatalysts for oxygen reactions in fuel cell and electrolyzers. Curr. Opin. Electrochem. 2021, 29, 100832.
Wei, C.; Wang, Z. B.; Otani, K.; Hochfilzer, D.; Zhang, K.; Nielsen, R.; Chorkendorff, I.; Kibsgaard, J. Benchmarking electrocatalyst stability for acidic oxygen evolution reaction: The crucial role of dissolved ion concentration. ACS Catal. 2023, 13, 14058–14069.
Loučka, T. The reason for the loss of activity of titanium anodes coated with a layer of RuO2 and TiO2. J. Appl. Electrochem. 1977, 7, 211–214.
Hine, F.; Yasuda, M.; Noda, T.; Yoshida, T.; Okuda, J. Electrochemical behavior of the oxide-coated metal anodes. J. Electrochem. Soc. 1979, 126, 1439–1445.
Yeo, R. S.; Orehotsky, J.; Visscher, W.; Srinivasan, S. Ruthenium-based mixed oxides as electrocatalysts for oxygen evolution in acid electrolytes. J. Electrochem. Soc. 1981, 128, 1900–1904.
Scarpellino, A. J.; Fisher, G. L. The development of an energy-efficient insoluble anode for nickel electrowinning: II. Multilayer precious metal coatings. J. Electrochem. Soc. 1982, 129, 522–525.
Comninellis, C.; Vercesi, G. P. Characterization of DSA®-type oxygen evolving electrodes: Choice of a coating. J. Appl. Electrochem. 1991, 21, 335–345.
Mráz, R.; Krýsa, J. Long service life IrO2/Ta2O5 electrodes for electroflotation. J. Appl. Electrochem. 1994, 24, 1262–1266.
De Faria, L. A.; Boodts, J. F. C.; Trasatti, S. Electrocatalytic properties of ternary oxide mixtures of composition Ru0.3Ti0.7− x Ce x O2: Oxygen evolution from acidic solution. J. Appl. Electrochem. 1996, 26, 1195–1199.
Correa-Lozano, B.; Comninellis, C.; De Battisti, A. Service life of Ti/SnO2-Sb2O5 anodes. J. Appl. Electrochem. 1997, 27, 970–974.
Alves, V. A.; Da Silva, L. A.; Boodts, J. F. C. Electrochemical impedance spectroscopic study of dimensionally stable anode corrosion. J. Appl. Electrochem. 1998, 28, 899–905.
Terezo, A. J.; Pereira, E. C. Fractional factorial design applied to investigate properties of Ti/IrO2-Nb2O5 electrodes. Electrochim. Acta 2000, 45, 4351–4358.
Chen, X. M.; Chen, G. H.; Yue, P. L. Stable Ti/IrO x -Sb2O5-SnO2 anode for O2 evolution with low Ir content. J. Phys. Chem. B 2001, 105, 4623–4628.
Hu, J. M.; Meng, H. M.; Zhang, J. Q.; Cao, C. N. Degradation mechanism of long service life Ti/IrO2-Ta2O5 oxide anodes in sulphuric acid. Corros. Sci. 2002, 44, 1655–1668.
Fernández, J. L.; De Chialvo, M. R. G.; Chialvo, A. C. Preparation and electrochemical characterization of Ti/Ru x Mn1− x O2 electrodes. J. Appl. Electrochem. 2002, 32, 513–520.
Xu, L. K.; Scantlebury, J. D. A study on the deactivation of an IrO2-Ta2O5 coated titanium anode. Corros. Sci. 2003, 45, 2729–2740.
Chen, X. M.; Chen, G. H. Stable Ti/RuO2-Sb2O5-SnO2 electrodes for O2 evolution. Electrochim Acta 2005, 50, 4155–4159.
Li, B. S.; Lin, A.; Gan, F. X. Preparation and electrocatalytic properties of Ti/IrO2-Ta2O5 anodes for oxygen evolution. Trans. Nonferrous Met. Soc. China 2006, 16, 1193–1199.
Hoseinieh, S. M.; Ashrafizadeh, F.; Maddahi, M. H. A comparative investigation of the corrosion behavior of RuO2-IrO2-TiO2 coated titanium anodes in chloride solutions. J. Electrochem. Soc. 2010, 157, E50–E56.
Chen, S. Y.; Zheng, Y. H.; Wang, S. W.; Chen, X. M. Ti/RuO2-Sb2O5-SnO2 electrodes for chlorine evolution from seawater. Chem. Eng. J. 2011, 172, 47–51.
Fathollahi, F.; Javanbakht, M.; Norouzi, P.; Ganjali, M. R. Comparison of morphology, stability and electrocatalytic properties of Ru0.3Ti0.7O2 and Ru0.3Ti0.4Ir0.3O2 coated titanium anodes. Russ. J. Electrochem. 2011, 47, 1281–1286.
Wang, S. W.; Xu, H. L.; Yao, P. D.; Chen, X. M. Ti/RuO2-IrO2-SnO2-Sb2O5 anodes for Cl2 evolution from seawater. Electrochemistry 2012, 80, 507–511.
Hoseinieh, S. M.; Ashrafizadeh, F. Influence of electrolyte composition on deactivation mechanism of a Ti/Ru0.25Ir0.25Ti0.5O2 electrode. Ionics 2013, 19, 113–125.
Yan, Z. W.; Zhao, Y. W.; Zhang, Z. Z.; Li, G.; Li, H. C.; Wang, J. S.; Feng, Z. Q.; Tang, M. Q.; Yuan, X. J.; Zhang, R. Z. et al. A study on the performance of IrO2-Ta2O5 coated anodes with surface treated Ti substrates. Electrochim. Acta 2015, 157, 345–350.
Zheng, Y. R.; Vernieres, J.; Wang, Z. B.; Zhang, K.; Hochfilzer, D.; Krempl, K.; Liao, T. W.; Presel, F.; Altantzis, T.; Fatermans, J. et al. Monitoring oxygen production on mass-selected iridium-tantalum oxide electrocatalysts. Nat. Energy 2022, 7, 55–64.
Zlatar, M.; Escalera-López, D.; Rodríguez, M. G.; Hrbek, T.; Götz, C.; Joy, R. M.; Savan, A.; Tran, H. P.; Nong, H. N.; Pobedinskas, P. et al. Standardizing OER electrocatalyst benchmarking in aqueous electrolytes: Comprehensive guidelines for accelerated stress tests and backing electrodes. ACS Catal. 2023, 13, 15375–15392.
El-Sayed, H. A.; Weiß, A.; Olbrich, L. F.; Putro, G. P.; Gasteiger, H. A. OER catalyst stability investigation using RDE technique: A stability measure or an artifact. J. Electrochem. Soc. 2019, 166, F458–F464.
Tovini, M. F.; Hartig-Weiß, A.; Gasteiger, H. A.; El-Sayed, H. A. The discrepancy in oxygen evolution reaction catalyst lifetime explained: RDE vs MEA-dynamicity within the catalyst layer matters. J. Electrochem. Soc. 2021, 168, 014512.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See https://creativecommons.org/licenses/by/4.0/.