PDF (5.8 MB)
Collect
Submit Manuscript
Research Article | Open Access

Unveiling the Eley–Rideal mechanism: H2 activation for nitrobenzene hydrogenation on nitrogen-doped carbon nanotubes

Hongquan Fu1,2Kuntao Huang1Jialong Zhang3()Yonghai Cao1Hongjuan Wang1Hejun Gao2Yunwen Liao2Shuang Li3Hao Yu1 ()
School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China
Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, China
School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
Show Author Information

Graphical Abstract

View original image Download original image
The hydrogenation of nitrobenzene catalyzed by nitrogen-doped carbon materials tends to follow the Eley–Rideal (ER) mechanism rather than the Horiuti–Polanyi (HP) mechanism.

Abstract

Nitrogen-doped carbon nanotubes (NCNTs) emerge as an efficient metal-free catalyst for the hydrogenation of nitrobenzene to aniline, utilizing molecular hydrogen (H2) as the reducing agent. However, the mechanism of H2 activation on NCNTs is under debate so far. Here, we unveil the catalytic mechanism of NCNTs in this reaction through a comprehensive approach combining experimental and theoretical investigations. Our findings indicate that NCNTs are unable to directly dissociate H2 molecules, suggesting that the hydrogenation reaction does not proceed via the conventional Horiuti–Polanyi mechanism. Instead, we propose an Eley–Rideal mechanism, where H2 molecules are activated upon adsorption on the surface of NCNTs with adsorbed nitrobenzene molecules. Graphitic nitrogen (NG) and pyridine nitrogen (NP) are identified as the primary active sites. However, at higher nitrogen contents, the synergistic interaction between NP and NG is detrimental to catalytic activity, emphasizing that increased nitrogen content does not necessarily enhance performance. Further experiments demonstrate that, in addition to direct H2 activation, the transfer hydrogenation in protic solvents significantly boosts the overall reaction rate. Our work provides deep insights into the mechanism of H2 activation for the nitrobenzene hydrogenation catalyzed by NCNTs and offers theoretical guidance for the rational design of high-performance metal-free catalysts in catalytic hydrogenation reactions.

Electronic Supplementary Material

Download File(s)
0028_ESM.pdf (2 MB)

References

[1]

Wang, D.; Astruc, D. The golden age of transfer hydrogenation. Chem. Rev. 2015, 115, 6621–6686.

[2]
Patel, M.; Savaram, K.; Li, Q. D.; Buchspies, J.; Ma, N.; Szostak, M.; He, H. X. Carbon-based, metal-free catalysts for chemical catalysis. In Carbon-Based Metal-Free Catalysts: Design and Applications. Dai, L. M., Ed.; Wiley-VCH: Weinheim, 2018; pp 597–657.
[3]

Su, D. S.; Wen, G. D.; Wu, S. C.; Peng, F.; Schlögl, R. Carbocatalysis in liquid-phase reactions. Angew. Chem., Int. Ed. 2017, 56, 936–964.

[4]

Kong, X. K.; Sun, Z. Y.; Chen, M.; Chen, C. L.; Chen, Q. W. Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene. Energy Environ. Sci. 2013, 6, 3260–3266.

[5]

Wei, Q. H.; Qin, F. F.; Ma, Q. X.; Shen, W. Z. Coal tar- and residual oil-derived porous carbon as metal-free catalyst for nitroarene reduction to aminoarene. Carbon 2019, 141, 542–552.

[6]

Chen, X. H.; Shen, Q. J.; Li, Z. J.; Wan, W. H.; Chen, J. Z.; Zhang, J. Y. Metal-free H2 activation for highly selective hydrogenation of nitroaromatics using phosphorus-doped carbon nanotubes. ACS Appl. Mater. Interfaces 2020, 12, 654–666.

[7]

Li, B. J.; Xu, Z. A nonmetal catalyst for molecular hydrogen activation with comparable catalytic hydrogenation capability to noble metal catalyst. J. Am. Chem. Soc. 2009, 131, 16380–16382.

[8]

Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W. Reversible, metal-free hydrogen activation. Science 2006, 314, 1124–1126.

[9]

Chen, D. J.; Wang, Y. T.; Klankermayer, J. Enantioselective hydrogenation with chiral frustrated lewis pairs. Angew. Chem., Int. Ed. 2010, 49, 9475–9478.

[10]

Liu, Q.; Liao, Q. B.; Hu, J. L.; Xi, K.; Wu, Y. T.; Hu, X. B. Covalent organic frameworks anchored with frustrated Lewis pairs for hydrogenation of alkynes with H2. J. Mater. Chem. A 2022, 10, 7333–7340.

[11]

Primo, A.; Neatu, F.; Florea, M.; Parvulescu, V.; Garcia, H. Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nat. Commun. 2014, 5, 5291.

[12]

Zhang, Y.; Lan, P. C.; Martin, K.; Ma, S. Q. Porous frustrated Lewis pair catalysts: Advances and perspective. Chem Catal. 2022, 2, 439–457.

[13]

Ding, Y. X.; Huang, X.; Yi, X. F.; Qiao, Y. X.; Sun, X. Y.; Zheng, A. M.; Su, D. S. A heterogeneous metal-free catalyst for hydrogenation: Lewis acid-base pairs integrated into a carbon lattice. Angew. Chem., Int. Ed. 2018, 57, 13800–13804.

[14]

Shan, J. X.; Sun, X. Q.; Zheng, S. Y.; Wang, T. D.; Zhang, X. W.; Li, G. Z. Graphitic N-dominated nitrogen-doped carbon nanotubes as efficient metal-free catalysts for hydrogenation of nitroarenes. Carbon 2019, 146, 60–69.

[15]

Chi, Y. Q.; Zheng, S. Y.; Zhang, X. W.; Li, G. Z. Chitosan derived N-doped carbon nanotubes for selective hydrogenation of nitroarenes to anilines. Int. J. Hydrogen Energy 2021, 46, 36124–36136.

[16]

Xiong, W.; Wang, Z. N.; He, S. L.; Hao, F.; Yang, Y. Z.; Lv, Y.; Zhang, W. B.; Liu, P. L.; Luo, H. A. Nitrogen-doped carbon nanotubes as a highly active metal-free catalyst for nitrobenzene hydrogenation. Appl. Catal. B: Environ. 2020, 260, 118105.

[17]

Luo, Z. C.; Nie, R. F.; Nguyen, V. T.; Biswas, A.; Behera, R. K.; Wu, X.; Kobayashi, T.; Sadow, A.; Wang, B.; Huang, W. Y. et al. Transition metal-like carbocatalyst. Nat. Commun. 2020, 11, 4091.

[18]

Chase, P. A.; Welch, G. C.; Jurca, T.; Stephan, D. W. Metal-free catalytic hydrogenation. Angew. Chem., Int. Ed. 2007, 46, 8050–8053.

[19]

Zhou, Z.; Gao, X. P.; Yan, J.; Song, D. Y. Doping effects of B and N on hydrogen adsorption in single-walled carbon nanotubes through density functional calculations. Carbon 2006, 44, 939–947.

[20]

Ulbricht, H.; Moos, G.; Hertel, T. Interaction of molecular oxygen with single-wall carbon nanotube bundles and graphite. Surf. Sci. 2003, 532–535, 852–856.

[21]

Han, D.; Liu, Y.; Lv, Y.; Xiong, W.; Hao, F.; Luo, H. A.; Liu, P. L. In situ oxygen-induced zigzag graphene as metal-free catalyst for hydrogen activation in nitroarenes hydrogenation. Carbon 2023, 203, 347–356.

[22]

Fu, H. Q.; Huang, K. T.; Yang, G. X.; Cao, Y. H.; Wang, H. J.; Peng, F.; Wang, Q.; Yu, H. Synergistic effect of nitrogen dopants on carbon nanotubes on the catalytic selective epoxidation of styrene. ACS Catal. 2020, 10, 129–137.

[23]

Wang, X.; Zhao, H.; Zhou, Y.; Yin, C.; He, W.; Feng, F.; Wang, F.; Lu, C.; Li, X. Yeast-derived N, P co-doped porous green carbon materials as metal-free catalysts for selective hydrogenation of chloronitrobenzene. Green Chemistry 2024, 26, 7958–7970.

[24]

Deng, Y. C.; Gao, R.; Lin, L. L.; Liu, T.; Wen, X. D.; Wang, S.; Ma, D. Solvent tunes the selectivity of hydrogenation reaction over α-MoC catalyst. J. Am. Chem. Soc. 2018, 140, 14481–14489.

[25]

Michel, C.; Gallezot, P. Why is ruthenium an efficient catalyst for the aqueous-phase hydrogenation of biosourced carbonyl compounds. ACS Catal. 2015, 5, 4130–4132.

[26]

Carley, A. F.; Edwards, H. A.; Mile, B.; Roberts, M. W.; Rowlands, C. C.; Jackson, S. D.; Hancock, F. E. An EPR study of a palladium catalyst using a PBN (N-benzylidene-tert-butylamine N-oxide) spin trap: Direct demonstration of hydrogen spillover. J. Chem. Soc. Chem. Commun. 1994, 1407–1408.

[27]

Burt, A.; Emery, M.; Maher, J.; Mile, B. Electron spin resonance allied with spin traps to detect and identify atoms and radicals on Pd-supported catalyst surfaces in solution. Magn. Reson. Chem. 2001, 39, 85–88.

[28]

Wang, H.; Shi, Y. Z.; Wang, Z. W.; Song, Y. J.; Shen, M. C.; Guo, B. B.; Wu, L. Selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde over Au-Pd/ultrathin SnNb2O6 nanosheets under visible light. J. Catal. 2021, 396, 374–386.

[29]

Al-Madanat, O.; Nunes, B. N.; AlSalka, Y.; Hakki, A.; Curti, M.; Patrocinio, A. O. T.; Bahnemann, D. W. Application of EPR spectroscopy in TiO2 and Nb2O5 photocatalysis. Catalysts 2021, 11, 1514.

[30]

Wang, X. D.; Cárdenas-Lizana, F.; Keane, M. A. Toward sustainable chemoselective nitroarene hydrogenation using supported gold as catalyst. ACS Sustain. Chem. Eng. 2014, 2, 2781–2789.

[31]

Cai, S. F.; Duan, H. H.; Rong, H. P.; Wang, D. S.; Li, L. S.; He, W.; Li, Y. D. Highly active and selective catalysis of bimetallic Rh3Ni1 nanoparticles in the hydrogenation of nitroarenes. ACS Catal. 2013, 3, 608–612.

[32]

Corma, A.; Concepción, P.; Serna, P. A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. Angew. Chem., Int. Ed. 2007, 46, 7266–7269.

[33]

Wang, H. H.; Zhang, W.; Liu, Y. Q.; Pu, M.; Lei, M. First-principles study on the mechanism of nitrobenzene reduction to aniline catalyzed by a N-doped carbon-supported cobalt single-atom catalyst. J. Phys. Chem. C 2021, 125, 19171–19182.

[34]

Hu, X. W.; Long, Y.; Fan, M. Y.; Yuan, M.; Zhao, H.; Ma, J. T.; Dong, Z. P. Two-dimensional covalent organic frameworks as self-template derived nitrogen-doped carbon nanosheets for eco-friendly metal-free catalysis. Appl. Catal. B: Environ. 2019, 244, 25–35.

[35]

Tian, G. L.; Zhang, Q.; Zhang, B. S.; Jin, Y. G.; Huang, J. Q.; Su, D. S.; Wei, F. Toward full exposure of “active sites”: Nanocarbon electrocatalyst with surface enriched nitrogen for superior oxygen reduction and evolution reactivity. Adv. Funct. Mater. 2014, 24, 5956–5961.

[36]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09, Revision d. 01; Gaussian. Inc.: Wallingford, 2009.
[37]

Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396.

[38]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[39]

Reed, A. E.; Curtiss, L. A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem. Rev. 1988, 88, 899–926.

Carbon Future
Article number: 9200028
Cite this article:
Fu H, Huang K, Zhang J, et al. Unveiling the Eley–Rideal mechanism: H2 activation for nitrobenzene hydrogenation on nitrogen-doped carbon nanotubes. Carbon Future, 2025, 2(1): 9200028. https://doi.org/10.26599/CF.2025.9200028
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return