Developing energy storage devices with high energy and power density requires rigorously optimizing both the anode and cathode materials. This work presents a novel approach utilizing commercially available carbon cloth, composed of carbon fibers with a graphitic shell and an amorphous carbon core, as a free-standing electrode for lithium-ion capacitors (LICs). The aligned graphitic layers in the carbon fibers, combined with the three-dimensional structure of the free-standing electrode, reduce tortuosity and enhance power density. To further improve the ion transport kinetics, we employed an FeCl3 pre-insertion strategy, expanding the graphite lattice in the outer shell of the carbon fibers and significantly improving the Li+ ion diffusion rate, leading to enhanced rate capability. The LICs were fabricated using FeCl3 pre-inserted carbon cloth as a free-standing anode and a porous carbon cloth cathode derived from high-temperature activation. The device achieved an energy density of 5.2 mWh/cm3 (37.7 Wh/kg), surpassing that of commercial 3.6 V lithium-ion batteries (3.2 mWh/cm3), with a power density of 6 mW/cm3. Additionally, the LIC exhibited excellent cycling stability, retaining 86% of its initial capacitance after 10,000 charge–discharge cycles. This study demonstrates a promising strategy for fabricating high-performance and scalable energy storage devices by integrating material design with advanced electrode engineering.
Yang, J.; Li, M. Z.; Fang, S. L.; Wang, Y. L.; He, H. Y.; Wang, C. L.; Zhang, Z. J.; Yuan, B. C.; Jiang, L.; Baughman, R. H. et al. Water-induced strong isotropic MXene-bridged graphene sheets for electrochemical energy storage. Science 2024, 383, 771–777.
Zhang, M.; Lan, S.; Yang, B. B.; Pan, H.; Liu, Y. Q.; Zhang, Q. H.; Qi, J. L.; Chen, D.; Su, H.; Yi, D. et al. Ultrahigh energy storage in high-entropy ceramic capacitors with polymorphic relaxor phase. Science 2024, 384, 185–189.
Xu, X. Y.; Zhang, J.; Zhang, Z. H.; Lu, G. D.; Cao, W.; Wang, N.; Xia, Y. M.; Feng, Q. L.; Qiao, S. L. All-covalent organic framework nanofilms assembled lithium-ion capacitor to solve the imbalanced charge storage kinetics. Nano-Micro Lett. 2024, 16, 116.
Bi, R. Y.; Xu, N.; Ren, H.; Yang, N. L.; Sun, Y. G.; Cao, A. M.; Yu, R. B.; Wang, D. A hollow multi-shelled structure for charge transport and active sites in lithium-ion capacitors. Angew. Chem., Int. Ed. 2020, 59, 4865–4868.
Liang, J. X.; Wang, D. W. Design rationale and device configuration of lithium-ion capacitors. Adv. Energy Mater. 2022, 12, 2200920.
Wang, L.; Zhang, X.; Kong, Y. Y.; Li, C.; An, Y. B.; Sun, X. Z.; Wang, K.; Ma, Y. W. Metal-organic framework-derived CoSe2@N-doped carbon nanocubes for high-performance lithium-ion capacitors. Rare Met. 2024, 43, 2150–2160.
Parejo-Tovar, A.; Merlet, C.; Ratajczak, P.; Béguin, F. Operando tracking of ion population changes in the EDL electrode of a lithium-ion capacitor during its charge/discharge. Energy Storage Mater. 2024, 73, 103810.
Ma, Y. B.; Wang, K.; Xu, Y. N.; Zhang, X. D.; Peng, Q. F.; Guo, Y.; Sun, X. Z.; Zhang, X.; Wu, Z. S.; Ma, Y. M. Black phosphorus covalent bonded by metallic antimony toward high-energy lithium-ion capacitors. Adv. Energy Mater. 2024, 14, 2304408.
Gao, Y.; Tang, Y. K.; Liu, L.; Li, X. H.; Qian, M.; Ma, W. J. A Novel anode material Li2FeGeO4 with lithium storage mechanism controlled by both iron and germanium elements. Small 2023, 19, 2304593.
Guo, X. Y.; Qiao, Y.; Yi, Z. L.; Pedersen, C. M.; Wang, Y. X.; Tian, X. D.; Han, P. D. Furfural residues derived nitrogen-sulfur co-doped sheet-like carbon: An excellent electrode for dual carbon lithium-ion capacitors. Green Energy Environ. 2024, 9, 1427–1439.
Liang, T.; Mao, Z. F.; Li, L. Y.; Wang, R.; He, B. B.; Gong, Y. S.; Jin, J.; Yan, C. J.; Wang, H. W. A mechanically flexible necklace-like architecture for achieving fast charging and high capacity in advanced lithium-ion capacitors. Small 2022, 18, 2201792.
Peng, Q. F.; Wang, K.; Gong, Y.; Zhang, X. D.; Xu, Y. N.; Ma, Y. B.; Zhang, X.; Sun, X. Z.; Ma, Y. W. Tailoring lignin-derived porous carbon toward high-energy lithium-ion capacitor through varying sp2- and sp3-hybridized bonding. Adv. Funct. Mater. 2023, 33, 2308284.
Zhu, C. Y.; Mao, J. J.; Zhao, J. Y.; Luo, Y. H.; Li, J. D.; Lei, C.; Li, G.; Cheng, F. A facile in situ sulfurization strategy for heterostructured SnS2@graphene scrolls anode with enhanced initial coulombic efficiency for high-energy lithium storage. Adv Funct. Mater. 2024, 2406730.
Zhao, C. Y.; Yao, S. Y.; Li, C.; An, Y. B.; Zhao, S. S.; Sun, X. Z.; Wang, K.; Zhang, X.; Ma, Y. W. Recent advances in transition metal oxides as anode materials for high-performance lithium-ion capacitors. Chem. Eng. J. 2024, 497, 154535.
Sun, C. K.; Zhang, X.; Li, C.; Wang, K.; Sun, X. Z.; Ma, Y. W. High-efficiency sacrificial prelithiation of lithium-ion capacitors with superior energy-storage performance. Energy Storage Mater. 2020, 24, 160–166.
Li, G. C.; Huang, Y. L.; Yin, Z. L.; Guo, H. J.; Liu, Y.; Cheng, H.; Wu, Y. P.; Ji, X. B.; Wang, J. X. Defective synergy of 2D graphitic carbon nanosheets promotes lithium-ion capacitors performance. Energy Storage Mater. 2020, 24, 304–311.
Zhang, Y. Z.; Hu, Z. W.; Li, H. W.; Qiao, J. Q.; Wang, X. J.; Liu, Z. M. A conductive flexible carbon nanoyarns embedded with VN quantum dots for highly kinetics-compatible Li-ion capacitors. Chem. Eng. J. 2024, 492, 152221.
Lv, C.; He, W. J.; Jiang, J. M.; Zhen, E. M.; Dou, H.; Zhang, X. G. Structure optimization of solvent-free Li4Ti5O12 electrodes by electrostatic spraying for lithium-ion capacitors. J. Power Sources 2023, 556, 232487.
Wang, S. G.; Wang, S. C.; Zhang, L. Application of high resolution transmission X-ray tomography in material science. Acta Metall. Sin. 2013, 49, 897.
Dresselhaus, M. S.; Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 1981, 30, 139–326.
Matsumoto, R.; Okabe, Y. Electrical conductivity and air stability of FeCl3, CuCl2, MoCl5, and SbCl5 graphite intercalation compounds prepared from flexible graphite sheets. Synth. Met. 2016, 212, 62–68.
Wang, F.; Yi, J.; Wang, Y. G.; Wang, C. X.; Wang, J. Q.; Xia, Y. Y. Graphite intercalation compounds (GICs): A new type of promising anode material for lithium-ion batteries. Adv. Energy Mater. 2014, 4, 1300600.
Wang, H. Y.; Fan, R. X.; Miao, J. Y.; Deng, J.; Wang, Y. Oxygen groups immobilized on micropores for enhancing the pseudocapacitance. ACS Sustainable Chem. Eng. 2019, 7, 11407–11414.
Deng, J.; Xiong, T. Y.; Xu, F.; Li, M. M.; Han, C. L.; Gong, Y. T.; Wang, H. Y.; Wang, Y. Inspired by bread leavening: One-pot synthesis of hierarchically porous carbon for supercapacitors. Green Chem. 2015, 17, 4053–4060.
Zhang, J.; Shi, Z. Q.; Wang, C. Y. Effect of pre-lithiation degrees of mesocarbon microbeads anode on the electrochemical performance of lithium-ion capacitors. Electrochim. Acta 2014, 125, 22–28.
Sun, H. T.; Mei, L.; Liang, J. F.; Zhao, Z. P.; Lee, C.; Fei, H. L.; Ding, M. N.; Lau, J.; Li, M. F.; Wang, C. et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 2017, 356, 599–604.
Dong, Y. F.; Xu, X. M.; Li, S.; Han, C. H.; Zhao, K. N.; Zhang, L.; Niu, C. J.; Huang, Z.; Mai, L. Inhibiting effect of Na+ pre-intercalation in MoO3 nanobelts with enhanced electrochemical performance. Nano Energy 2015, 15, 145–152.
Wang, H. Y.; Deng, J.; Xu, C. M.; Chen, Y. Q.; Xu, F.; Wang, J.; Wang, Y. Ultramicroporous carbon cloth for flexible energy storage with high areal capacitance. Energy Storage Mater. 2017, 7, 216–221.