PDF (17.8 MB)
Collect
Submit Manuscript
Show Outline
Figures (4)

Research Article | Open Access

High performance Li-ion capacitor achieved by rational design of carbon cloth based intercalated anode and porous cathode

Jiang Deng1 ()Haiyan Wang2Yong Wang3 ()
Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
Show Author Information

Graphical Abstract

View original image Download original image
The aligned graphitic layers in free-standing carbon cloth can reduce the tortuosity, and the expanding lattice endows faster ion-diffusion kinetics and leads to high-rate capability in terms of Li-ion capacitors.

Abstract

Developing energy storage devices with high energy and power density requires rigorously optimizing both the anode and cathode materials. This work presents a novel approach utilizing commercially available carbon cloth, composed of carbon fibers with a graphitic shell and an amorphous carbon core, as a free-standing electrode for lithium-ion capacitors (LICs). The aligned graphitic layers in the carbon fibers, combined with the three-dimensional structure of the free-standing electrode, reduce tortuosity and enhance power density. To further improve the ion transport kinetics, we employed an FeCl3 pre-insertion strategy, expanding the graphite lattice in the outer shell of the carbon fibers and significantly improving the Li+ ion diffusion rate, leading to enhanced rate capability. The LICs were fabricated using FeCl3 pre-inserted carbon cloth as a free-standing anode and a porous carbon cloth cathode derived from high-temperature activation. The device achieved an energy density of 5.2 mWh/cm3 (37.7 Wh/kg), surpassing that of commercial 3.6 V lithium-ion batteries (3.2 mWh/cm3), with a power density of 6 mW/cm3. Additionally, the LIC exhibited excellent cycling stability, retaining 86% of its initial capacitance after 10,000 charge–discharge cycles. This study demonstrates a promising strategy for fabricating high-performance and scalable energy storage devices by integrating material design with advanced electrode engineering.

Electronic Supplementary Material

Download File(s)
0030_ESM.pdf (1.6 MB)

References

[1]

Yang, J.; Li, M. Z.; Fang, S. L.; Wang, Y. L.; He, H. Y.; Wang, C. L.; Zhang, Z. J.; Yuan, B. C.; Jiang, L.; Baughman, R. H. et al. Water-induced strong isotropic MXene-bridged graphene sheets for electrochemical energy storage. Science 2024, 383, 771–777.

[2]

Zhang, M.; Lan, S.; Yang, B. B.; Pan, H.; Liu, Y. Q.; Zhang, Q. H.; Qi, J. L.; Chen, D.; Su, H.; Yi, D. et al. Ultrahigh energy storage in high-entropy ceramic capacitors with polymorphic relaxor phase. Science 2024, 384, 185–189.

[3]

Xu, X. Y.; Zhang, J.; Zhang, Z. H.; Lu, G. D.; Cao, W.; Wang, N.; Xia, Y. M.; Feng, Q. L.; Qiao, S. L. All-covalent organic framework nanofilms assembled lithium-ion capacitor to solve the imbalanced charge storage kinetics. Nano-Micro Lett. 2024, 16, 116.

[4]

Bi, R. Y.; Xu, N.; Ren, H.; Yang, N. L.; Sun, Y. G.; Cao, A. M.; Yu, R. B.; Wang, D. A hollow multi-shelled structure for charge transport and active sites in lithium-ion capacitors. Angew. Chem., Int. Ed. 2020, 59, 4865–4868.

[5]

Liang, J. X.; Wang, D. W. Design rationale and device configuration of lithium-ion capacitors. Adv. Energy Mater. 2022, 12, 2200920.

[6]

Wang, L.; Zhang, X.; Kong, Y. Y.; Li, C.; An, Y. B.; Sun, X. Z.; Wang, K.; Ma, Y. W. Metal-organic framework-derived CoSe2@N-doped carbon nanocubes for high-performance lithium-ion capacitors. Rare Met. 2024, 43, 2150–2160.

[7]

Parejo-Tovar, A.; Merlet, C.; Ratajczak, P.; Béguin, F. Operando tracking of ion population changes in the EDL electrode of a lithium-ion capacitor during its charge/discharge. Energy Storage Mater. 2024, 73, 103810.

[8]

Ma, Y. B.; Wang, K.; Xu, Y. N.; Zhang, X. D.; Peng, Q. F.; Guo, Y.; Sun, X. Z.; Zhang, X.; Wu, Z. S.; Ma, Y. M. Black phosphorus covalent bonded by metallic antimony toward high-energy lithium-ion capacitors. Adv. Energy Mater. 2024, 14, 2304408.

[9]

Gao, Y.; Tang, Y. K.; Liu, L.; Li, X. H.; Qian, M.; Ma, W. J. A Novel anode material Li2FeGeO4 with lithium storage mechanism controlled by both iron and germanium elements. Small 2023, 19, 2304593.

[10]

Guo, X. Y.; Qiao, Y.; Yi, Z. L.; Pedersen, C. M.; Wang, Y. X.; Tian, X. D.; Han, P. D. Furfural residues derived nitrogen-sulfur co-doped sheet-like carbon: An excellent electrode for dual carbon lithium-ion capacitors. Green Energy Environ. 2024, 9, 1427–1439.

[11]

Liang, T.; Mao, Z. F.; Li, L. Y.; Wang, R.; He, B. B.; Gong, Y. S.; Jin, J.; Yan, C. J.; Wang, H. W. A mechanically flexible necklace-like architecture for achieving fast charging and high capacity in advanced lithium-ion capacitors. Small 2022, 18, 2201792.

[12]

Peng, Q. F.; Wang, K.; Gong, Y.; Zhang, X. D.; Xu, Y. N.; Ma, Y. B.; Zhang, X.; Sun, X. Z.; Ma, Y. W. Tailoring lignin-derived porous carbon toward high-energy lithium-ion capacitor through varying sp2- and sp3-hybridized bonding. Adv. Funct. Mater. 2023, 33, 2308284.

[13]

Zhu, C. Y.; Mao, J. J.; Zhao, J. Y.; Luo, Y. H.; Li, J. D.; Lei, C.; Li, G.; Cheng, F. A facile in situ sulfurization strategy for heterostructured SnS2@graphene scrolls anode with enhanced initial coulombic efficiency for high-energy lithium storage. Adv Funct. Mater. 2024, 2406730.

[14]

Zhao, C. Y.; Yao, S. Y.; Li, C.; An, Y. B.; Zhao, S. S.; Sun, X. Z.; Wang, K.; Zhang, X.; Ma, Y. W. Recent advances in transition metal oxides as anode materials for high-performance lithium-ion capacitors. Chem. Eng. J. 2024, 497, 154535.

[15]

Sun, C. K.; Zhang, X.; Li, C.; Wang, K.; Sun, X. Z.; Ma, Y. W. High-efficiency sacrificial prelithiation of lithium-ion capacitors with superior energy-storage performance. Energy Storage Mater. 2020, 24, 160–166.

[16]

Li, G. C.; Huang, Y. L.; Yin, Z. L.; Guo, H. J.; Liu, Y.; Cheng, H.; Wu, Y. P.; Ji, X. B.; Wang, J. X. Defective synergy of 2D graphitic carbon nanosheets promotes lithium-ion capacitors performance. Energy Storage Mater. 2020, 24, 304–311.

[17]

Zhang, Y. Z.; Hu, Z. W.; Li, H. W.; Qiao, J. Q.; Wang, X. J.; Liu, Z. M. A conductive flexible carbon nanoyarns embedded with VN quantum dots for highly kinetics-compatible Li-ion capacitors. Chem. Eng. J. 2024, 492, 152221.

[18]

Lv, C.; He, W. J.; Jiang, J. M.; Zhen, E. M.; Dou, H.; Zhang, X. G. Structure optimization of solvent-free Li4Ti5O12 electrodes by electrostatic spraying for lithium-ion capacitors. J. Power Sources 2023, 556, 232487.

[19]

Wang, S. G.; Wang, S. C.; Zhang, L. Application of high resolution transmission X-ray tomography in material science. Acta Metall. Sin. 2013, 49, 897.

[20]

Dresselhaus, M. S.; Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 1981, 30, 139–326.

[21]

Matsumoto, R.; Okabe, Y. Electrical conductivity and air stability of FeCl3, CuCl2, MoCl5, and SbCl5 graphite intercalation compounds prepared from flexible graphite sheets. Synth. Met. 2016, 212, 62–68.

[22]

Wang, F.; Yi, J.; Wang, Y. G.; Wang, C. X.; Wang, J. Q.; Xia, Y. Y. Graphite intercalation compounds (GICs): A new type of promising anode material for lithium-ion batteries. Adv. Energy Mater. 2014, 4, 1300600.

[23]

Wang, H. Y.; Fan, R. X.; Miao, J. Y.; Deng, J.; Wang, Y. Oxygen groups immobilized on micropores for enhancing the pseudocapacitance. ACS Sustainable Chem. Eng. 2019, 7, 11407–11414.

[24]

Deng, J.; Xiong, T. Y.; Xu, F.; Li, M. M.; Han, C. L.; Gong, Y. T.; Wang, H. Y.; Wang, Y. Inspired by bread leavening: One-pot synthesis of hierarchically porous carbon for supercapacitors. Green Chem. 2015, 17, 4053–4060.

[25]

Zhang, J.; Shi, Z. Q.; Wang, C. Y. Effect of pre-lithiation degrees of mesocarbon microbeads anode on the electrochemical performance of lithium-ion capacitors. Electrochim. Acta 2014, 125, 22–28.

[26]

Sun, H. T.; Mei, L.; Liang, J. F.; Zhao, Z. P.; Lee, C.; Fei, H. L.; Ding, M. N.; Lau, J.; Li, M. F.; Wang, C. et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 2017, 356, 599–604.

[27]

Dong, Y. F.; Xu, X. M.; Li, S.; Han, C. H.; Zhao, K. N.; Zhang, L.; Niu, C. J.; Huang, Z.; Mai, L. Inhibiting effect of Na+ pre-intercalation in MoO3 nanobelts with enhanced electrochemical performance. Nano Energy 2015, 15, 145–152.

[28]

Wang, H. Y.; Deng, J.; Xu, C. M.; Chen, Y. Q.; Xu, F.; Wang, J.; Wang, Y. Ultramicroporous carbon cloth for flexible energy storage with high areal capacitance. Energy Storage Mater. 2017, 7, 216–221.

Carbon Future
Article number: 9200030
Cite this article:
Deng J, Wang H, Wang Y. High performance Li-ion capacitor achieved by rational design of carbon cloth based intercalated anode and porous cathode. Carbon Future, 2025, 2(1): 9200030. https://doi.org/10.26599/CF.2025.9200030
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return