PDF (24.1 MB)
Collect
Submit Manuscript
Review | Open Access | Online First

Research on the direct synthesis of glycerol carbonate from carbon dioxide and glycerol

Dan Yang1 ()Yating Wu1,#Yiwen Zhao1,#Yifei Wang1Chunmei Zhou1Yihu Dai1Xiaoyue Wan1Yuguang Jin3Yanhui Yang1,2 ()
Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 73000, China
Ordos Laboratory, Ordos 017010, China

#Yating Wu and Yiwen Zhao contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
This review highlights recent progress about direct synthesis of glycerol carbonate from carbon dioxide and glycerol in the view of both the catalyst design and the process intensification, which provides some feasible strategies for catalyst preparation and process intensification to promote the catalytic properties.

Abstract

Using biodiesel-based glycerol as raw material to directly synthesize glycerol carbonate with CO2 can not only promote the benign development of biodiesel industry, but also have positive significance for carbon reduction. However, the glycerol-CO2 reaction is unfavorable in thermodynamics and kinetics, leading to a poor catalytic property. In order to achieve high activation of glycerol and CO2, as well as break the low reaction efficiency, accurately and effectively reinforcing the reaction process and tuning the structure of catalysts are of significance. In this survey, we summarize the recent advances of the direct synthesis of glycerol carbonate from carbon dioxide and glycerol in the view of both the catalyst design and the process intensification. Particularly, the thermocatalysis, photothermal catalysis, and electrothermal catalysis are discussed. In addition, the structure–activity relationship and mechanism based on activated glycerol and CO2 over the heterogeneous catalysts are also presented. Furthermore, we also provide some feasible strategies for catalyst preparation and process intensification to promote the catalytic properties.

References

[1]

Knothe, G.; Razon, L. F. Biodiesel fuels. Prog. Energy Combust. Sci. 2017, 58, 36–59.

[2]

Liu, Y. J.; Zhong, B. Q.; Lawal, A. Recovery and utilization of crude glycerol, a biodiesel byproduct. RSC Adv. 2022, 12, 27997–28008.

[3]

Dufresne, J. L.; Eymet, V.; Crevoisier, C.; Grandpeix, J. Y. Greenhouse effect: The relative contributions of emission height and total absorption. J. Climate 2020, 33, 3827–3844.

[4]

Tan, H. Z.; Wang, Z. Q.; Xu, Z. N.; Sun, J.; Xu, Y. P.; Chen, Q. S.; Chen, Y. S.; Guo, G. C. Review on the synthesis of dimethyl carbonate. Catal. Today 2018, 316, 2–12.

[5]

Fukuoka, S.; Fukawa, I.; Adachi, T.; Fujita, H.; Sugiyama, N.; Sawa, T. Industrialization and expansion of green sustainable chemical process: A review of non-phosgene polycarbonate from CO2. Org. Process Res. Dev. 2019, 23, 145–169.

[6]

Cui, S. Q.; Borgemenke, J.; Liu, Z.; Li, Y. B. Recent advances of “soft” bio-polycarbonate plastics from carbon dioxide and renewable bio-feedstocks via straightforward and innovative routes. J. CO2 Util. 2019, 34, 40–52.

[7]

Zheng, Y.; Li, Z. M.; Chai, J. L. Progress and prospects of international carbon peaking and carbon neutral research-based on bibliometric analysis (1991–2022). Front. Energy Res. 2023, 11, 1121639.

[8]

George, J.; Patel, Y.; Pillai, S. M.; Munshi, P. Methanol assisted selective formation of 1,2-glycerol carbonate from glycerol and carbon dioxide using n Bu2SnO as a catalyst. J. Mol. Catal. A Chem. 2009, 304, 1–7.

[9]

Zhou, C. H.; Beltramini, J. N.; Fan, Y. X.; Lu, G. Q. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem. Soc. Rev. 2008, 37, 527–549.

[10]

Evarts, E. C. Lithium batteries: To the limits of lithium. Nature. 2015, 526, S93–S95.

[11]

Pescarmona, P. P. Cyclic carbonates synthesised from CO2: Applications, challenges and recent research trends. Curr. Opin. Green Sustain. Chem. 2021, 29, 100457.

[12]

Sonnati, M. O.; Amigoni, S.; Taffin de Givenchy, E. P.; Darmanin, T.; Choulet, O.; Guittard, F. Glycerol carbonate as a versatile building block for tomorrow: Synthesis, reactivity, properties and applications. Green Chem. 2013, 15, 283–306.

[13]

Muzyka, C.; Monbaliu, J. C. M. Perspectives for the upgrading of bio-based vicinal diols within the developing European bioeconomy. ChemSusChem 2022, 15, e202102391.

[14]

Grignard, B.; Gennen, S.; Jérôme, C.; Kleij, A. W.; Detrembleur, C. Advances in the use of CO2 as a renewable feedstock for the synthesis of polymers. Chem. Soc. Rev. 2019, 48, 4466–4514.

[15]

Monie, F.; Grignard, B.; Thomassin, J. M.; Mereau, R.; Tassaing, T.; Jerome, C.; Detrembleur, C. Chemo- and regioselective additions of nucleophiles to cyclic carbonates for the preparation of self-blowing non-isocyanate polyurethane foams. Angew. Chem., Int. Ed. 2020, 59, 17033–17041.

[16]

Carré, C.; Ecochard, Y.; Caillol, S.; Avérous, L. From the synthesis of biobased cyclic carbonate to polyhydroxyurethanes: A promising route towards renewable non-isocyanate polyurethanes. ChemSusChem 2019, 12, 3410–3430.

[17]

Maisonneuve, L.; Lamarzelle, O.; Rix, E.; Grau, E.; Cramail, H. Isocyanate-free routes to polyurethanes and poly(hydroxy urethane)s. Chem. Rev. 2015, 115, 12407–12439.

[18]

Gomez-Lopez, A.; Elizalde, F.; Calvo, I.; Sardon, H. Trends in non-isocyanate polyurethane (NIPU) development. Chem. Commun. 2021, 57, 12254–12265.

[19]

Bobbink, F. D.; van Muyden, A. P.; Dyson, P. J. En route to CO2-containing renewable materials: Catalytic synthesis of polycarbonates and non-isocyanate polyhydroxyurethanes derived from cyclic carbonates. Chem. Commun. 2019, 55, 1360–1373.

[20]

Rokicki, G.; Rakoczy, P.; Parzuchowski, P.; Sobiecki, M. Hyperbranched aliphatic polyethers obtained from environmentally benign monomer: Glycerol carbonate. Green Chem. 2005, 7, 529–539.

[21]

Li, J. B.; Wang, T. Chemical equilibrium of glycerol carbonate synthesis from glycerol. J. Chem. Thermodyn. 2011, 43, 731–736.

[22]

Liu, J. X.; Li, Y. J.; Liu, H. M.; He, D. H. Photo-thermal synergistically catalytic conversion of glycerol and carbon dioxide to glycerol carbonate over Au/ZnWO4-ZnO catalysts. Appl. Catal. B: Environ. 2019, 244, 836–843.

[23]

Li, Y. J.; Liu, H. M.; Ma, L.; Liu, J. X.; He, D. H. Transforming glycerol and CO2 into glycerol carbonate over La2O2CO3-ZnO catalyst—A case study of the photo-thermal synergism. Catal. Sci. Technol. 2021, 11, 1007–1013.

[24]

Liu, H. M.; Li, Y. J.; Ma, L.; Liu, J. X.; He, D. H. Photo-thermal conversion of CO2 and biomass-based glycerol into glycerol carbonate over Co3O4-ZnO p-n heterojunction catalysts. Fuel 2022, 315, 123294.

[25]

Li, Y. J.; Liu, H. M.; Ma, L.; Liu, J. X.; He, D. H. Photothermal synthesis of glycerol carbonate via glycerol carbonylation with CO2 over Au/Co3O4-ZnO catalyst. Acta Phys. Chim. Sin. 2024, 40, 2308005.

[26]

Zhang, J.; He, D. H. Surface properties of Cu/La2O3 and its catalytic performance in the synthesis of glycerol carbonate and monoacetin from glycerol and carbon dioxide. J. Colloid Interface Sci. 2014, 419, 31–38.

[27]

Collett, C.; Mašek, O.; Razali, N.; McGregor, J. Influence of biochar composition and source material on catalytic performance: The carboxylation of glycerol with CO2 as a case study. Catalysts. 2020, 10, 1067.

[28]

Luo, C.; Lu, H.; Tang, H.; Wu, K.; Liu, Y.; Zhu, Y.; Tang, S.; Wang, B.; Liang, B. Unveiling the complementary mechanism in the one-pot synthesis of glycerol carbonate from CO2 and glycerol. Fuel. 2023, 348, 128493.

[29]

Lukato, S.; Kasozi, G. N.; Naziriwo, B.; Tebandeke, E. Glycerol carbonylation with CO2 to form glycerol carbonate: A review of recent developments and challenges. Curr. Res. Green Sustain. Chem. 2021, 4, 100199.

[30]

Muzyka, C.; Silva-Brenes, D. V.; Grignard, B.; Detrembleur, C.; Monbaliu, J. C. M. The catalytic coupling of CO2 and glycidol toward glycerol carbonate. ACS Catal. 2024, 14, 12454–12493.

[31]

Vieville, C.; Yoo, J. W.; Pelet, S.; Mouloungui, Z. Synthesis of glycerol carbonate by direct carbonatation of glycerol in supercritical CO2 in the presence of zeolites and ion exchange resins. Catal. Lett. 1998, 56, 245–247.

[32]

Aresta, M.; Dibenedetto, A.; Nocito, F.; Pastore, C. A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: The role of the catalyst, solvent and reaction conditions. J. Mol. Catal. A: Chem. 2006, 257, 149–153.

[33]

Zhang, Q.; Yuan, H. Y.; Lin, X. T.; Fukaya, N.; Fujitani, T.; Sato, K.; Choi, J. C. Calcium carbide as a dehydrating agent for the synthesis of carbamates, glycerol carbonate, and cyclic carbonates from carbon dioxide. Green Chem. 2020, 22, 4231–4239.

[34]

Kuhaudomlap, S.; Srifa, A.; Koo-Amornpattana, W.; Fukuhara, C.; Ratchahat, S. Insight and comprehensive study of Ni-based catalysts supported on various metal oxides for CO2 methanation. Sci. Rep. 2024, 14, 23149.

[35]

Ozorio, L. P.; Mota, C. J. A. Direct carbonation of glycerol with CO2 catalyzed by metal oxides. ChemPhysChem 2017, 18, 3260–3265.

[36]

Ren, X. N.; Zhang, Z. X.; Wang, Y. H.; Lu, J. M.; An, J. H.; Zhang, J.; Wang, M.; Wang, X. K.; Luo, Y. Capping experiments reveal multiple surface active sites in CeO2 and their cooperative catalysis. RSC Adv. 2019, 9, 15229–15237.

[37]

Liu, J. X.; Li, Y. M.; Zhang, J.; He, D. H. Glycerol carbonylation with CO2 to glycerol carbonate over CeO2 catalyst and the influence of CeO2 preparation methods and reaction parameters. Appl. Catal. A: Gen. 2016, 513, 9–18.

[38]

Kulal, N.; Vetrivel, R.; Ganesh Krishna, N. S.; Shanbhag, G. V. Zn-doped CeO2 nanorods for glycerol carbonylation with CO2. ACS Appl. Nano Mater. 2021, 4, 4388–4397.

[39]

Gao, Z. X.; Xiang, M.; He, M. Y.; Zhou, W. Y.; Chen, J. Y.; Lu, J. M.; Wu, Z. Y.; Su, Y. Q. Transformation of CO2 with glycerol to glycerol carbonate over ETS-10 zeolite-based catalyst. Molecules 2023, 28, 2272.

[40]

Koranian, P.; Kumar Dalai, A.; Sammynaiken, R. Production of glycerol carbonate from glycerol and carbon dioxide using metal oxide catalysts. Chem. Eng. Sci. 2024, 286, 119687.

[41]

Pawar, A. A.; Kim, H. Transformation of glycerol and CO2 to glycerol carbonate over ionic liquids-composite catalysts: Activity, stability, and effect of Li/Al metal oxide. J. Ind. Eng. Chem. 2024, 133, 172–182.

[42]

Li, H. G.; Gao, D. Z.; Gao, P.; Wang, F.; Zhao, N.; Xiao, F. K.; Wei, W.; Sun, Y. H. The synthesis of glycerol carbonate from glycerol and CO2 over La2O2CO3-ZnO catalysts. Catal. Sci. Technol. 2013, 3, 2801–2809.

[43]

Park, C. Y.; Nguyen-Phu, H.; Shin, E. W. Glycerol carbonation with CO2 and La2O2CO3/ZnO catalysts prepared by two different methods: Preferred reaction route depending on crystalline structure. Mol. Catal. 2017, 435, 99–109.

[44]

Al-Kurdhani, J. M. H.; Wang, H. J. The synthesis of glycerol carbonate from glycerol and carbon dioxide over supported CuO-based nanoparticle catalyst. Molecules 2023, 28, 4164.

[45]

Liu, J. X.; Li, Y. J.; Liu, H. M.; He, D. H. Transformation of CO2 and glycerol to glycerol carbonate over CeO2-ZrO2 solid solution-effect of Zr doping. Biomass Bioenergy 2018, 118, 74–83.

[46]

Xu, H. H.; Ke, Y. H. Synthesis of glycerol carbonate from glycerol and CO2 over Cu-Zr complex oxide. J. Fuel Chem. Technol. 2024, 52, 171–182.

[47]

Li, H. G.; Xin, C. L.; Jiao, X.; Zhao, N.; Xiao, F. K.; Li, L.; Wei, W.; Sun, Y. H. Direct carbonylation of glycerol with CO2 to glycerol carbonate over Zn/Al/La/X (X = F, Cl, Br) catalysts: The influence of the interlayer anion. J. Mol. Catal. A: Chem. 2015, 402, 71–78.

[48]

Li, H. G.; Jiao, X.; Li, L.; Zhao, N.; Xiao, F. K.; Wei, W.; Sun, Y. H.; Zhang, B. S. Synthesis of glycerol carbonate by direct carbonylation of glycerol with CO2 over solid catalysts derived from Zn/Al/La and Zn/Al/La/M (M = Li, Mg and Zr) hydrotalcites. Catal. Sci. Technol. 2015, 5, 989–1005.

[49]

Pandey, P. H.; Pawar, H. S. Mingled metal oxides catalyst for direct carbonylation of glycerol into glycerol carbonate. ChemistrySelect 2022, 7, e202104264.

[50]

Zhang, J.; He, D. H. Synthesis of glycerol carbonate and monoacetin from glycerol and carbon dioxide over Cu catalysts: The role of supports. J. Chem. Technol. Biotechnol. 2015, 90, 1077–1085.

[51]

Lim, Y. N.; Lee, C.; Jang, H. Y. Metal-free synthesis of cyclic and acyclic carbonates from CO2 and alcohols. Eur. J. Org. Chem. 2014, 2014, 1823–1826.

[52]

Su, X. L. N.; Lin, W. W.; Cheng, H. Y.; Zhang, C.; Wang, Y.; Yu, X. J.; Wu, Z. J.; Zhao, F. Y. Metal-free catalytic conversion of CO2 and glycerol to glycerol carbonate. Green Chem. 2017, 19, 1775–1781.

[53]

Alassmy, Y. A.; Paalman, P. J.; Pescarmona, P. P. One-pot fixation of CO2 into glycerol carbonate using ion-exchanged Amberlite resin beads as efficient metal-free heterogeneous catalysts. ChemCatChem 2021, 13, 475–486.

[54]

Hu, C.; Yoshida, M.; Chen, H. C.; Tsunekawa, S.; Lin, Y. F.; Huang, J. H. Production of glycerol carbonate from carboxylation of glycerol with CO2 using ZIF-67 as a catalyst. Chem. Eng. Sci. 2021, 235, 116451.

[55]

Hu, C.; Chang, C. W.; Yoshida, M.; Wang, K. H. Lanthanum nanocluster/ZIF-8 for boosting catalytic CO2/glycerol conversion using MgCO3 as a dehydrating agent. J. Mater. Chem. A 2021, 9, 7048–7058.

[56]

Razali, N.; McGregor, J. Improving product yield in the direct carboxylation of glycerol with CO2 through the tailored selection of dehydrating agents. Catalysts 2021, 11, 138.

[57]

Wang, Z. Q.; Yang, Z. Q.; Fang, R. M.; Yan, Y. F.; Ran, J. Y.; Zhang, L. A state-of-the-art review on action mechanism of photothermal catalytic reduction of CO2 in full solar spectrum. Chem. Eng. J. 2022, 429, 132322.

[58]

Buckley, B. R.; Patel, A. P.; Wijayantha, K. G. U. Electrosynthesis of cyclic carbonates from epoxides and atmospheric pressure carbon dioxide. Chem. Commun. 2011, 47, 11888–11890.

[59]

Wang, H.; Zhu, M. X.; Wu, L. X.; Xu, X. M.; Zhao, X. R.; Lu, J. X. Electrosynthesis of glycerol carbonate from CO2 and glycerol. J. Electrochem. 2013, 19, 328–331.

[60]

Ma, J.; Song, J. L.; Liu, H. Z.; Liu, J. L.; Zhang, Z. F.; Jiang, T.; Fan, H. L.; Han, B. X. One-pot conversion of CO2 and glycerol to value-added products using propylene oxide as the coupling agent. Green Chem. 2012, 14, 1743–1748.

[61]

León, M.; Díaz, E.; Bennici, S.; Vega, A.; Ordóñez, S.; Auroux, A. Adsorption of CO2 on hydrotalcite-derived mixed oxides: Sorption mechanisms and consequences for adsorption irreversibility. Ind. Eng. Chem. Res. 2010, 49, 3663–3671

[62]

Du, H.; Williams, C. T.; Ebner, A. D.; Ritter, J. A. In situ FTIR spectroscopic analysis of carbonate transformations during adsorption and desorption of CO2 in K-promoted HTlc. Chem. Mater. 2010, 22, 3519–3526.

[63]

Yan, X. L.; Liu, Y.; Zhao, B. R.; Wang, Z.; Wang, Y.; Liu, C. J. Methanation over Ni/SiO2: Effect of the catalyst preparation methodologies. Int. J. Hydrogen Energy 2013, 38, 2283–2291.

[64]

Zhou, R.; Rui, N.; Fan, Z. G.; Liu, C. J. Effect of the structure of Ni/TiO2 catalyst on CO2 methanation. Int. J. Hydrogen Energy 2016, 41, 22017–22025.

[65]

Xu, W. J.; Zhan, Z. B.; Di, L. B.; Zhang, X. L. Enhanced activity for CO oxidation over Pd/Al2O3 catalysts prepared by atmospheric-pressure cold plasma. Catal. Today 2015, 256, 148–152.

[66]

Di, L. B.; Zhan, Z. B.; Zhang, X. L.; Qi, B.; Xu, W. J. Atmospheric-pressure DBD cold plasma for preparation of high active Au/P25 catalysts for low-temperature CO oxidation. Plasma Sci. Technol. 2016, 18, 544–548.

[67]

Zhou, C. M.; Guo, Z.; Dai, Y. H.; Jia, X. L.; Yu, H.; Yang, Y. H. Promoting role of bismuth on carbon nanotube supported platinum catalysts in aqueous phase aerobic oxidation of benzyl alcohol. Appl. Catal. B: Environ. 2016, 181, 118–126.

[68]

Hülsey, M. J.; Lim, C. W.; Yan, N. Promoting heterogeneous catalysis beyond catalyst design. Chem. Sci. 2020, 11, 1456–1468.

[69]

You, B.; Liu, X.; Jiang, N.; Sun, Y. J. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 2016, 138, 13639–13646.

[70]

Cai, F.; Gao, D. F.; Zhou, H.; Wang, G. X.; He, T.; Gong, H. M.; Miao, S.; Yang, F.; Wang, J. G.; Bao, X. H. Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction. Chem. Sci. 2017, 8, 2569–2573.

[71]
Díez-Ramírez, J.; Sánchez, P.; Valverde, J. L.; Dorado, F. Electrochemical promotion and characterization of PdZn alloy catalysts with K and Na ionic conductors for pure gaseous CO2 hydrogenation. J. CO 2 Util. 2016 , 16, 375–383.
Carbon Future
Cite this article:
Yang D, Wu Y, Zhao Y, et al. Research on the direct synthesis of glycerol carbonate from carbon dioxide and glycerol. Carbon Future, 2025, https://doi.org/10.26599/CF.2025.9200031
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return