CO2 hydrogenation over Cu-based catalysts has the potential to enable green methanol synthesis. A unique reduction-exsolution strategy based on CuAl2O4 spinel is proposed to significantly enhance the structural tunability and catalytic performance of Cu-based catalysts. In-situ characterization demonstrates that this strategy can synthesize catalysts featuring uniform dispersed Cu particles, abundant surface Cu+ species and oxygen vacancies, and superior methanol selectivity and yields. By exploiting CuAl2O4 as the precursor, this reduction-exsolution strategy also enriches Cu/oxide interfacial sites, on which the methanol yield of optimized ZnO/CuAl2O4 catalyst has surpassed that of a commercial Cu/ZnO/Al2O3 catalyst. Detailed structure-performance correlations highlight the broad applicability of this design principle, offering new avenues for developing efficient Cu-based catalysts.
Zhang, J. P.; Li, Z. W.; Zhang, Z. H.; Liu, R.; Chu, B. Z.; Yan, B. H. Techno-economic analysis of integrating a CO2 hydrogenation-to-methanol unit with a coal-to-methanol process for CO2 reduction. ACS Sustain. Chem. Eng. 2020, 8, 18062–18070.
Zhang, J. P.; Li, Z. W.; Zhang, Z. H.; Feng, K.; Yan, B. H. Can thermocatalytic transformations of captured CO2 reduce CO2 emissions? Appl. Energy 2021, 281, 116076.
Huang, Y.; Zhu, L.; He, Y. D.; Wang, Y.; Hao, Q.; Zhu, Y. F. Carbon dioxide utilization based on exergoenvironmental sustainability assessment: A case study of CO2 hydrogenation to methanol. Energy 2023, 273, 127219.
Jiang, X.; Nie, X. W.; Guo, X. W.; Song, C. S.; Chen, J. G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem. Rev. 2020, 120, 7984–8034.
Zhong, J. W.; Yang, X. F.; Wu, Z. L.; Liang, B. L.; Huang, Y. Q.; Zhang, T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem. Soc. Rev. 2020, 49, 1385–1413.
Fujitani, T.; Nakamura, J. The chemical modification seen in the Cu/ZnO methanol synthesis catalysts. Appl. Catal. A: Gen. 2000, 191, 111–129.
Kuld, S.; Conradsen, C.; Moses, P. G.; Chorkendorff, I.; Sehested, J. Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst. Angew. Chem., Int. Ed. 2014, 53, 5941–5945.
Kattel, S.; Ramírez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 2017, 355, 1296–1299.
Wang, Y. H.; Kattel, S.; Gao, W. G.; Li, K. Z.; Liu, P.; Chen, J. G.; Wang, H. Exploring the ternary interactions in Cu-ZnO-ZrO2 catalysts for efficient CO2 hydrogenation to methanol. Nat. Commun. 2019, 10, 1166.
An, W.; Xu, F.; Stacchiola, D.; Liu, P. Potassium-induced effect on the structure and chemical activity of the Cu x O/Cu (111) ( x ≤ 2) surface: A combined scanning tunneling microscopy and density functional theory study. ChemCatChem 2015, 7, 3865–3872.
Yu, J. F.; Yang, M.; Zhang, J. X.; Ge, Q. J.; Zimina, A.; Pruessmann, T.; Zheng, L.; Grunwaldt, J. D.; Sun, J. Stabilizing Cu+ in Cu/SiO2 catalysts with a shattuckite-like structure boosts CO2 hydrogenation into methanol. ACS Catal. 2020, 10, 14694–14706.
Bonura, G.; Cordaro, M.; Cannilla, C.; Arena, F.; Frusteri, F. The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol. Appl. Catal. B: Environ. 2014, 152–153, 152–161.
Zhang, C.; Yang, H. Y.; Gao, P.; Zhu, H.; Zhong, L. S.; Wang, H.; Wei, W.; Sun, Y. H. Preparation and CO2 hydrogenation catalytic properties of alumina microsphere supported Cu-based catalyst by deposition–precipitation method. J. CO2 Util. 2017, 17, 263–272.
Samson, K.; Śliwa, M.; Socha, R. P.; Góra-Marek, K.; Mucha, D.; Rutkowska-Zbik, D.; Paul, J. F.; Ruggiero-Mikołajczyk, M.; Grabowski, R.; Słoczyński, J. Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2. ACS Catal. 2014, 4, 3730–3741.
Zheng, J. W.; Huang, L. L.; Cui, C. H.; Chen, Z. C.; Liu, X. F.; Duan, X. P.; Cao, X. Y.; Yang, T. Z.; Zhu, H. P.; Shi, K. et al. Ambient-pressure synthesis of ethylene glycol catalyzed by C60-buffered Cu/SiO2. Science 2022, 376, 288–292.
Dong, X. S.; Li, F.; Zhao, N.; Xiao, F. K.; Wang, J. W.; Tan, Y. S. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation–reduction method. Appl. Catal. B: Environ. 2016, 191, 8–17.
Wang, Z. Q.; Xu, Z. N.; Peng, S. Y.; Zhang, M. J.; Lu, G.; Chen, Q. S.; Chen, Y. M.; Guo, G. C. High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation. ACS Catal. 2015, 5, 4255–4259.
Li, Z. W.; Zhang, J. J.; Tian, J. M.; Feng, K.; Chen, Y. X.; Li, X.; Zhang, Z. H.; Qian, S. R.; Yang, B.; Su, D. et al. Decoupling active sites enables low-temperature semihydrogenation of acetylene. ACS Catal. 2024, 14, 1514–1524.
Feng, K.; Tian, J. M.; Guo, M.; Wang, Y. N.; Wang, S. H.; Wu, Z. Y.; Zhang, J. P.; He, L.; Yan, B. H. Experimentally unveiling the origin of tunable selectivity for CO2 hydrogenation over Ni-based catalysts. Appl. Catal. B: Environ. 2021, 292, 120191.
Zhang, S. S.; Ying, M.; Yu, J.; Zhan, W. C.; Wang, L.; Guo, Y.; Guo, Y. L. Ni x Al1O2− δ mesoporous catalysts for dry reforming of methane: The special role of NiAl2O4 spinel phase and its reaction mechanism. Appl. Catal. B: Environ. 2021, 291, 120074.
Yan, B. H.; Wu, Q. Y.; Cen, J. J.; Timoshenko, J.; Frenkel, A. I.; Su, D.; Chen, X. Y.; Parise, J. B.; Stach, E.; Orlov, A. et al. Highly active subnanometer Rh clusters derived from Rh-doped SrTiO3 for CO2 reduction. Appl. Catal. B: Environ. 2018, 237, 1003–1011.
Liao, W. j.; Liu, P. Methanol synthesis from CO2 hydrogenation over a potassium-promoted Cu x O/Cu (111) ( x ≤ 2) model surface: Rationalizing the potential of potassium in catalysis. ACS Catal. 2020, 10, 5723–5733.
Shaaban, E.; Li, G. H. Probing active sites for carbon oxides hydrogenation on Cu/TiO2 using infrared spectroscopy. Commun. Chem. 2022, 5, 32.
Ma, J. M.; Mao, L.; Du, H. X.; Zhong, J. K.; Jiang, L. F.; Liu, X. F.; Xu, J. W.; Xu, X. L.; Fang, X. Z.; Wang, X. Tracking the critical roles of Cu+ and Cu0 sites and the optimal Cu+/Cu0 ratio for CH3OH steam reforming (MTSR) to manufacture H2. Chem. Eng. J. 2024, 496, 154195.
Ye, R. P.; Ma, L. X.; Mao, J. N.; Wang, X. Y.; Hong, X. L.; Gallo, A.; Ma, Y. F.; Luo, W. H.; Wang, B. J.; Zhang, R. G. et al. A Ce-CuZn catalyst with abundant Cu/Zn-OV-Ce active sites for CO2 hydrogenation to methanol. Nat. Commun. 2024, 15, 2159.
Timalsina, Y. P.; Washington, M.; Wang, G. C.; Lu, T. M. Slow oxidation kinetics in an epitaxial copper (100) film. Appl. Surf. Sci. 2016, 363, 209–216.
Li, Z. L.; Wu, W. L.; Wang, M. L.; Wang, Y. N.; Ma, X. L.; Luo, L.; Chen, Y.; Fan, K. Y.; Pan, Y.; Li, H. L. et al. Ambient-pressure hydrogenation of CO2 into long-chain olefins. Nat. Commun. 2022, 13, 2396.
Zhou, H.; Chen, Z. X.; López, A. V.; López, E. D.; Lam, E.; Tsoukalou, A.; Willinger, E.; Kuznetsov, D. A.; Mance, D.; Kierzkowska, A. et al. Engineering the Cu/Mo2CT x (MXene) interface to drive CO2 hydrogenation to methanol. Nat. Catal. 2021, 4, 860–871.
Cored, J.; Mazarío, J.; Cerdá-Moreno, C.; Lustemberg, P. G.; Ganduglia-Pirovano, M. V.; Domine, M. E.; Concepción, P. Enhanced methanol production over non-promoted Cu-MgO-Al2O3 materials with ex-solved 2 nm Cu particles: Insights from an operando spectroscopic study. ACS Catal. 2022, 12, 3845–3857.
Cheng, Z. Z.; Jiang, C.; Sun, X. C.; Lan, G. J.; Wang, X. L.; He, L. J.; Li, Y. Z.; Tang, H. D.; Li, Y. Insights into the inducing effect of aluminum on Cu-ZnO synergy for methanol steam reforming. Ind. Eng. Chem. Res. 2022, 61, 11699–11707.