PDF (19.9 MB)
Collect
Submit Manuscript
Research Article | Open Access

Customizing copper structure via controlled exsolution of CuAl2O4 for enhanced CO2 hydrogenation to methanol

Xiaohang Sun1Jingpeng Zhang1Yue Pan2Gang Lin1Zhengwen Li1Dong Su2Binhang Yan1 ()
Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Show Author Information

Graphical Abstract

View original image Download original image
This work proposes a unique reduction exsolution strategy based on CuAl2O4 spinel to significantly enhance the structural tunability and catalytic performance of Cu-based catalysts. The systematic and comprehensive in situ characterizations reveal the mechanism of reduction exsolution strategy.

Abstract

CO2 hydrogenation over Cu-based catalysts has the potential to enable green methanol synthesis. A unique reduction-exsolution strategy based on CuAl2O4 spinel is proposed to significantly enhance the structural tunability and catalytic performance of Cu-based catalysts. In-situ characterization demonstrates that this strategy can synthesize catalysts featuring uniform dispersed Cu particles, abundant surface Cu+ species and oxygen vacancies, and superior methanol selectivity and yields. By exploiting CuAl2O4 as the precursor, this reduction-exsolution strategy also enriches Cu/oxide interfacial sites, on which the methanol yield of optimized ZnO/CuAl2O4 catalyst has surpassed that of a commercial Cu/ZnO/Al2O3 catalyst. Detailed structure-performance correlations highlight the broad applicability of this design principle, offering new avenues for developing efficient Cu-based catalysts.

Electronic Supplementary Material

Download File(s)
0032_ESM.pdf (1.7 MB)

References

[1]

Zhang, J. P.; Li, Z. W.; Zhang, Z. H.; Liu, R.; Chu, B. Z.; Yan, B. H. Techno-economic analysis of integrating a CO2 hydrogenation-to-methanol unit with a coal-to-methanol process for CO2 reduction. ACS Sustain. Chem. Eng. 2020, 8, 18062–18070.

[2]

Zhang, J. P.; Li, Z. W.; Zhang, Z. H.; Feng, K.; Yan, B. H. Can thermocatalytic transformations of captured CO2 reduce CO2 emissions? Appl. Energy 2021, 281, 116076.

[3]

Huang, Y.; Zhu, L.; He, Y. D.; Wang, Y.; Hao, Q.; Zhu, Y. F. Carbon dioxide utilization based on exergoenvironmental sustainability assessment: A case study of CO2 hydrogenation to methanol. Energy 2023, 273, 127219.

[4]

Jiang, X.; Nie, X. W.; Guo, X. W.; Song, C. S.; Chen, J. G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem. Rev. 2020, 120, 7984–8034.

[5]

Zhong, J. W.; Yang, X. F.; Wu, Z. L.; Liang, B. L.; Huang, Y. Q.; Zhang, T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem. Soc. Rev. 2020, 49, 1385–1413.

[6]

Fujitani, T.; Nakamura, J. The chemical modification seen in the Cu/ZnO methanol synthesis catalysts. Appl. Catal. A: Gen. 2000, 191, 111–129.

[7]

Kuld, S.; Conradsen, C.; Moses, P. G.; Chorkendorff, I.; Sehested, J. Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst. Angew. Chem., Int. Ed. 2014, 53, 5941–5945.

[8]

Kattel, S.; Ramírez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 2017, 355, 1296–1299.

[9]

Wang, Y. H.; Kattel, S.; Gao, W. G.; Li, K. Z.; Liu, P.; Chen, J. G.; Wang, H. Exploring the ternary interactions in Cu-ZnO-ZrO2 catalysts for efficient CO2 hydrogenation to methanol. Nat. Commun. 2019, 10, 1166.

[10]

An, W.; Xu, F.; Stacchiola, D.; Liu, P. Potassium-induced effect on the structure and chemical activity of the Cu x O/Cu (111) ( x ≤ 2) surface: A combined scanning tunneling microscopy and density functional theory study. ChemCatChem 2015, 7, 3865–3872.

[11]

Yu, J. F.; Yang, M.; Zhang, J. X.; Ge, Q. J.; Zimina, A.; Pruessmann, T.; Zheng, L.; Grunwaldt, J. D.; Sun, J. Stabilizing Cu+ in Cu/SiO2 catalysts with a shattuckite-like structure boosts CO2 hydrogenation into methanol. ACS Catal. 2020, 10, 14694–14706.

[12]

Bonura, G.; Cordaro, M.; Cannilla, C.; Arena, F.; Frusteri, F. The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol. Appl. Catal. B: Environ. 2014, 152–153, 152–161.

[13]

Zhang, C.; Yang, H. Y.; Gao, P.; Zhu, H.; Zhong, L. S.; Wang, H.; Wei, W.; Sun, Y. H. Preparation and CO2 hydrogenation catalytic properties of alumina microsphere supported Cu-based catalyst by deposition–precipitation method. J. CO2 Util. 2017, 17, 263–272.

[14]

Samson, K.; Śliwa, M.; Socha, R. P.; Góra-Marek, K.; Mucha, D.; Rutkowska-Zbik, D.; Paul, J. F.; Ruggiero-Mikołajczyk, M.; Grabowski, R.; Słoczyński, J. Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2. ACS Catal. 2014, 4, 3730–3741.

[15]

Zheng, J. W.; Huang, L. L.; Cui, C. H.; Chen, Z. C.; Liu, X. F.; Duan, X. P.; Cao, X. Y.; Yang, T. Z.; Zhu, H. P.; Shi, K. et al. Ambient-pressure synthesis of ethylene glycol catalyzed by C60-buffered Cu/SiO2. Science 2022, 376, 288–292.

[16]

Dong, X. S.; Li, F.; Zhao, N.; Xiao, F. K.; Wang, J. W.; Tan, Y. S. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation–reduction method. Appl. Catal. B: Environ. 2016, 191, 8–17.

[17]

Wang, Z. Q.; Xu, Z. N.; Peng, S. Y.; Zhang, M. J.; Lu, G.; Chen, Q. S.; Chen, Y. M.; Guo, G. C. High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation. ACS Catal. 2015, 5, 4255–4259.

[18]

Li, Z. W.; Zhang, J. J.; Tian, J. M.; Feng, K.; Chen, Y. X.; Li, X.; Zhang, Z. H.; Qian, S. R.; Yang, B.; Su, D. et al. Decoupling active sites enables low-temperature semihydrogenation of acetylene. ACS Catal. 2024, 14, 1514–1524.

[19]

Feng, K.; Tian, J. M.; Guo, M.; Wang, Y. N.; Wang, S. H.; Wu, Z. Y.; Zhang, J. P.; He, L.; Yan, B. H. Experimentally unveiling the origin of tunable selectivity for CO2 hydrogenation over Ni-based catalysts. Appl. Catal. B: Environ. 2021, 292, 120191.

[20]

Zhang, S. S.; Ying, M.; Yu, J.; Zhan, W. C.; Wang, L.; Guo, Y.; Guo, Y. L. Ni x Al1O2− δ mesoporous catalysts for dry reforming of methane: The special role of NiAl2O4 spinel phase and its reaction mechanism. Appl. Catal. B: Environ. 2021, 291, 120074.

[21]

Yan, B. H.; Wu, Q. Y.; Cen, J. J.; Timoshenko, J.; Frenkel, A. I.; Su, D.; Chen, X. Y.; Parise, J. B.; Stach, E.; Orlov, A. et al. Highly active subnanometer Rh clusters derived from Rh-doped SrTiO3 for CO2 reduction. Appl. Catal. B: Environ. 2018, 237, 1003–1011.

[22]

Liao, W. j.; Liu, P. Methanol synthesis from CO2 hydrogenation over a potassium-promoted Cu x O/Cu (111) ( x ≤ 2) model surface: Rationalizing the potential of potassium in catalysis. ACS Catal. 2020, 10, 5723–5733.

[23]

Shaaban, E.; Li, G. H. Probing active sites for carbon oxides hydrogenation on Cu/TiO2 using infrared spectroscopy. Commun. Chem. 2022, 5, 32.

[24]

Ma, J. M.; Mao, L.; Du, H. X.; Zhong, J. K.; Jiang, L. F.; Liu, X. F.; Xu, J. W.; Xu, X. L.; Fang, X. Z.; Wang, X. Tracking the critical roles of Cu+ and Cu0 sites and the optimal Cu+/Cu0 ratio for CH3OH steam reforming (MTSR) to manufacture H2. Chem. Eng. J. 2024, 496, 154195.

[25]

Ye, R. P.; Ma, L. X.; Mao, J. N.; Wang, X. Y.; Hong, X. L.; Gallo, A.; Ma, Y. F.; Luo, W. H.; Wang, B. J.; Zhang, R. G. et al. A Ce-CuZn catalyst with abundant Cu/Zn-OV-Ce active sites for CO2 hydrogenation to methanol. Nat. Commun. 2024, 15, 2159.

[26]

Timalsina, Y. P.; Washington, M.; Wang, G. C.; Lu, T. M. Slow oxidation kinetics in an epitaxial copper (100) film. Appl. Surf. Sci. 2016, 363, 209–216.

[27]

Li, Z. L.; Wu, W. L.; Wang, M. L.; Wang, Y. N.; Ma, X. L.; Luo, L.; Chen, Y.; Fan, K. Y.; Pan, Y.; Li, H. L. et al. Ambient-pressure hydrogenation of CO2 into long-chain olefins. Nat. Commun. 2022, 13, 2396.

[28]

Zhou, H.; Chen, Z. X.; López, A. V.; López, E. D.; Lam, E.; Tsoukalou, A.; Willinger, E.; Kuznetsov, D. A.; Mance, D.; Kierzkowska, A. et al. Engineering the Cu/Mo2CT x (MXene) interface to drive CO2 hydrogenation to methanol. Nat. Catal. 2021, 4, 860–871.

[29]

Cored, J.; Mazarío, J.; Cerdá-Moreno, C.; Lustemberg, P. G.; Ganduglia-Pirovano, M. V.; Domine, M. E.; Concepción, P. Enhanced methanol production over non-promoted Cu-MgO-Al2O3 materials with ex-solved 2 nm Cu particles: Insights from an operando spectroscopic study. ACS Catal. 2022, 12, 3845–3857.

[30]

Cheng, Z. Z.; Jiang, C.; Sun, X. C.; Lan, G. J.; Wang, X. L.; He, L. J.; Li, Y. Z.; Tang, H. D.; Li, Y. Insights into the inducing effect of aluminum on Cu-ZnO synergy for methanol steam reforming. Ind. Eng. Chem. Res. 2022, 61, 11699–11707.

[31]
Liu, Y. M.; Liu, J. T.; Liu, S. Z.; Li, J.; Gao, Z. H.; Zuo, Z. J.; Huang, W. Reaction mechanisms of methanol synthesis from CO/CO2 hydrogenation on Cu2O (111): Comparison with Cu (111). J. CO 2 Util. 2017 , 20, 59–65.
Carbon Future
Article number: 9200032
Cite this article:
Sun X, Zhang J, Pan Y, et al. Customizing copper structure via controlled exsolution of CuAl2O4 for enhanced CO2 hydrogenation to methanol. Carbon Future, 2025, 2(1): 9200032. https://doi.org/10.26599/CF.2025.9200032
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return