PDF (22.3 MB)
Collect
Submit Manuscript
Research Article | Open Access

Cu nanoparticles embedded in fluorinated mesoporous carbon for enhanced CO2 electroreduction to C2 products

Yao Ma#Taishi Xiao#Kerun ZhuDongyuan ZhaoWei Li()
Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, China

#Yao Ma and Taishi Xiao contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
Fluorinated-carbon confined Cu catalysts in the two-dimensional (2D) mesoporous carbon framework are synthesized via a bottom-up interfacial assembly strategy, which deliver a > 64% C2 products selectivity in the electrochemical CO2 reduction.

Abstract

The utilization of renewable electricity to drive the electrochemical CO2 reduction reaction (CO2RR) presents an attractive avenue for achieving carbon neutrality, as it facilitates the conversion of CO2 into valuable chemicals and fuels. However, producing high-energy-density multi-carbon hydrocarbon products (C2+) still suffers from low selectivity, and the process proves highly sensitive to both catalyst structure and electrolyte conditions. Here, we report the synthesis of fluorinated mesoporous carbon-confined copper nanoparticles (Cu@F-MC) via a bottom-up molecular self-assembly and carbonization strategy. The Cu@F-MC catalyst established a two-dimensional (2D) mesoporous structure with well-dispersed 6.5 nm-wide mesopores and a high surface area. The confinement effect of mesoporous carbon enabled the small size and well dispersion of Cu nanoparticles (~ 10 nm). The fluorine-doped structure not only effectively inhibited the side hydrogen evolution reaction, but also modulated the local electronic structures of Cu nanoparticles toward multi-carbon product generation. Thus, the Cu@F-MC exhibited a high current density of 500 mA·cm−2 with an ethanol Faradaic efficiency (FE) of 40% for CO2 reduction in a flow cell, and a prolonged stability with over 50% selectivity for FEC2+ during a 70h continuous electrolysis in the membrane electrode assembly test. This strategy offers a promising approach to concurrently improve the selectivity and stability of copper-based catalysts in CO2RR.

Electronic Supplementary Material

Download File(s)
0034_ESM.pdf (7.5 MB)

References

[1]

Arakawa, H.; Aresta, M.; Armor, J. N.; Barteau, M. A.; Beckman, E. J.; Bell, A. T.; Bercaw, J. E.; Creutz, C.; Dinjus, E.; Dixon, D. A. et al. Catalysis research of relevance to carbon management: Progress, challenges, and opportunities. Chem. Rev. 2001, 101, 953–996.

[2]

Jouny, M.; Luc, W.; Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 2018, 57, 2165–2177.

[3]

Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

[4]

Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it. Joule 2018, 2, 825–832.

[5]

Yang, H. Y.; Zhang, C.; Gao, P.; Wang, H.; Li, X. P.; Zhong, L. S.; Wei, W.; Sun, Y. H. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catal. Sci. Technol. 2017, 7, 4580–4598.

[6]

Guo, L. S.; Sun, J.; Ge, Q. J.; Tsubaki, N. Recent advances in direct catalytic hydrogenation of carbon dioxide to valuable C2+ hydrocarbons. J. Mater. Chem. A 2018, 6, 23244–23262.

[7]

Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.

[8]

Dokania, A.; Ramirez, A.; Bavykina, A.; Gascon, J. Heterogeneous catalysis for the valorization of CO2: Role of bifunctional processes in the production of chemicals. ACS Energy Lett. 2019, 4, 167–176.

[9]

Zhou, W.; Cheng, K.; Kang, J. C.; Zhou, C.; Subramanian, V.; Zhang, Q. H.; Wang, Y. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem. Soc. Rev. 2019, 48, 3193–3228.

[10]

Gao, D. F.; Arán-Ais, R. M.; Jeon, H. S.; Roldan Cuenya, B. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2019, 2, 198–210.

[11]

Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43, 631–675.

[12]

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

[13]

Loiudice, A.; Lobaccaro, P.; Kamali, E. A.; Thao, T.; Huang, B. H.; Ager, J. W.; Buonsanti, R. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2016, 55, 5789–5792.

[14]

De Luna, P.; Quintero-Bermudez, R.; Dinh, C. T.; Ross, M. B.; Bushuyev, O. S.; Todorović, P.; Regier, T.; Kelley, S. O.; Yang, P. D.; Sargent, E. H. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 2018, 1, 103–110.

[15]

Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X. Y.; Bell, D. C.; Nørskov, J. K.; Chan, K.; Wang, H. T. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 2018, 1, 111–119.

[16]

Li, J.; Xu, A. N.; Li, F. W.; Wang, Z. Y.; Zou, C. Q.; Gabardo, C. M.; Wang, Y. H.; Ozden, A.; Xu, Y.; Nam, D. H. et al. Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption. Nat. Commun. 2020, 11, 3685.

[17]

Li, Y. C.; Wang, Z. Y.; Yuan, T. G.; Nam, D. H.; Luo, M. C.; Wicks, J.; Chen, B.; Li, J.; Li, F. W.; de Arquer, F. P. G. et al. Binding site diversity promotes CO2 electroreduction to ethanol. J. Am. Chem. Soc. 2019, 141, 8584–8591.

[18]

Vasileff, A.; Xu, C. C.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4, 1809–1831.

[19]

Kim, T.; Palmore, G. T. R. A scalable method for preparing Cu electrocatalysts that convert CO2 into C2+ products. Nat. Commun. 2020, 11, 3622.

[20]

Zhang, J. W.; Zeng, G. M.; Zhu, S. Q.; Tao, H. L.; Pan, Y.; Lai, W. C.; Bao, J.; Lian, C.; Su, D.; Shao, M. H. et al. W. Steering CO2 electroreduction pathway toward ethanol via surface-bounded hydroxyl species-induced noncovalent interaction. Proc. Natl. Acad. Sci. USA 2023, 120, e2218987120.

[21]

Gu, J.; Liu, S.; Ni, W. Y.; Ren, W. H.; Haussener, S.; Hu, X. L. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal. 2022, 5, 268–276.

[22]

Zhang, J.; My Pham, T. H.; Gao, Z. X.; Li, M.; Ko, Y.; Lombardo, L.; Zhao, W.; Luo, W.; Züttel, A. Electrochemical CO2 reduction over copper phthalocyanine derived catalysts with enhanced selectivity for multicarbon products. ACS Catal. 2023, 13, 9326–9335.

[23]

Wu, G. F.; Zhu, C.; Mao, J. N.; Li, G. H.; Li, S. J.; Dong, X.; Chen, A. H.; Song, Y. F.; Feng, G. H.; Liu, X. H. et al. Ampere-level CO2-to-ethanol conversion via boron-incorporated copper electrodes. ACS Energy Lett. 2023, 8, 4867–4874.

[24]

Popović, S.; Smiljanić, M.; Jovanovič, P.; Vavra, J.; Buonsanti, R.; Hodnik, N. Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 14736–14746.

[25]

Kibria, G.; Dinh, C. T.; Seifitokaldani, A.; De Luna, P.; Burdyny, T.; Quintero-Bermudez, R.; Ross, M. B.; Bushuyev, O. S.; García de Arquer, F. P.; Yang, P. D. et al. A surface reconstruction route to high productivity and selectivity in CO2 electroreduction toward C2+ hydrocarbons. Adv. Mater. 2018, 30, 1804867.

[26]

Yu, L.; Deng, D. H.; Bao, X. H. Chain mail for catalysts. Angew. Chem., Int. Ed. 2020, 59, 15294–15297.

[27]

Wan, Y. H.; Wang, C. Y.; Zhang, X. M.; Yin, Y.; Liu, M. M.; Ma, B.; Duan, L. L.; Ma, Y. Z.; Zhang, W.; Zheng, C. L. et al. Micelle-directed self-assembly of single-crystal-like mesoporous stoichiometric oxides for high-performance lithium storage. Natl. Sci. Rev. 2024, 11, nwae054.

[28]

Sun, Z. K.; Sun, B.; Qiao, M. H.; Wei, J.; Yue, Q.; Wang, C.; Deng, Y. H.; Kaliaguine, S.; Zhao, D. Y. A general chelate-assisted co-assembly to metallic nanoparticles-incorporated ordered mesoporous carbon catalysts for Fischer–Tropsch synthesis. J. Am. Chem. Soc. 2012, 134, 17653–17660.

[29]

Kim, J. Y.; Hong, D.; Lee, J. C.; Kim, H. G.; Lee, S.; Shin, S.; Kim, B.; Lee, H.; Kim, M.; Oh, J. et al. Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO2 reduction toward C2+ products. Nat. Commun. 2021, 12, 3765.

[30]

Zhang, W.; Zhang, J. W.; Wang, N.; Zhu, K. R.; Yang, C. C.; Ai, Y.; Wang, F. M.; Tian, Y.; Ma, Y. Z.; Ma, Y. et al. Two-electron redox chemistry via single-atom catalyst for reversible zinc-air batteries. Nat. Sustain. 2024, 7, 463–473.

[31]

Zhang, W.; Zhu, K. R.; Yang, C. C.; Ai, Y.; Gao, Y. H.; Li, W.; Zhao, D. Y. Monomicelle-induced assembly route toward low-dimensional mesoporous nanomaterials for catalysis. EcoEnergy 2023, 1, 85–107.

[32]

Wan, Y.; Qian, X. F.; Jia, N. Q.; Wang, Z. Y.; Li, H. X.; Zhao, D. Y. Direct triblock-copolymer-templating synthesis of highly ordered fluorinated mesoporous carbon. Chem. Mater. 2008, 20, 1012–1018.

[33]

Chen, G.; Zhang, J. Y.; Yang, S. R. Fabrication of hydrophobic fluorinated amorphous carbon thin films by an electrochemical route. Electrochem. Commun. 2008, 10, 7–11.

[34]

Dai, Y.; Cai, S. D.; Wu, L. J.; Yang, W. J.; Xie, J. Y.; Wen, W.; Zheng, J. C.; Zhu, Y. M. Surface modified CF x cathode material for ultrafast discharge and high energy density. J. Mater. Chem. A 2014, 2, 20896–20901.

[35]

Esmaeilirad, M.; Jiang, Z.; Harzandi, A. M.; Kondori, A.; Tamadoni Saray, M.; Segre, C. U.; Shahbazian-Yassar, R.; Rappe, A. M.; Asadi, M. Imidazolium-functionalized Mo3P nanoparticles with an ionomer coating for electrocatalytic reduction of CO2 to propane. Nat. Energy 2023, 8, 891–900.

[36]

Qin, X. P.; Hansen, H. A.; Honkala, K.; Melander, M. M. Cation-induced changes in the inner- and outer-sphere mechanisms of electrocatalytic CO2 reduction. Nat. Commun. 2023, 14, 7607.

Carbon Future
Article number: 9200034
Cite this article:
Ma Y, Xiao T, Zhu K, et al. Cu nanoparticles embedded in fluorinated mesoporous carbon for enhanced CO2 electroreduction to C2 products. Carbon Future, 2025, 2(1): 9200034. https://doi.org/10.26599/CF.2025.9200034
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return