PDF (25.9 MB)
Collect
Submit Manuscript
Review | Open Access | Online First

Metal oxide semiconductor-based methane sensing

Renjie Chen1Shuyu Lin1Zhongtian Wang2Yi Xia3 ()Lan Xiang1 ()
Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Tanwei College, Tsinghua University, Beijing 100084, China
Research Center for Analysis and Measurement, Kunming University of Science and Technology, and Analytic & Testing Research Center of Yunnan, Kunming 650093, China
Show Author Information

Graphical Abstract

View original image Download original image
In this work, the problems and solutions in recent metal oxide semiconductor (MOS) CH4 sensing studies in the aspects of sensitivity, selectivity, stability, and humidity resistance from the perspective of sensitive materials, including recently explored breakthroughs, were summarized. Finally, based on the discussions, the future outlooks of MOS-based CH4 sensors have been put forward.

Abstract

Real-time and sensitive detection of methane (CH4) is vital to the safety of life and production due to the explosivity and greenhouse effect of methane. Currently, metal oxide semiconductor (MOS)-based chemiresistive sensors are considered as an effective approach for their low cost, highly tunable structures, and easy fabrication. However, disadvantages like high working temperature, low sensitivity, and unsatisfying selectivity limit their potential wide application. In order to achieve the goal of high-performance MOS-based methane sensors, in this review, from the basic mechanism of MOS-based gas sensing and the property of methane, possible strategies of improving methane sensing performances in multiple aspects have been summarized systematically, including sensitivity, selectivity, stability, and humidity resistance. Recent progress in the research and development of metal oxide semiconductor-based methane sensor technology is also surveyed in this review. Finally, the future trends and perspectives of MOS-based chemiresistive methane sensors are proposed.

References

[1]

Caballero, A.; Pérez, P. J. Methane as raw material in synthetic chemistry: The final frontier. Chem. Soc. Rev. 2013, 42, 8809–8820.

[2]

Umeozor, E. C.; Jordaan, S. M.; Gates, I. D. On methane emissions from shale gas development. Energy 2018, 152, 594–600.

[3]

Crow, D. J. G.; Balcombe, P.; Brandon, N.; Hawkes, A. D. Assessing the impact of future greenhouse gas emissions from natural gas production. Sci. Total Environ. 2019, 668, 1242–1258.

[4]

Tu, Z. L.; Li, L.; Wang, F.; Zhang, Y. T. Review on separation of coalbed methane by hydrate method. Fuel 2024, 358, 130224.

[5]

Demirbas, A.; Rehan, M.; Al-Sasi, B. O.; Nizami, A. S. Evaluation of natural gas hydrates as a future methane source. Pet. Sci. Technol. 2016, 34, 1204–1210.

[6]

Liao, S. Y.; Cheng, Q.; Jiang, D. M. Gao, J. Experimental study of flammability limits of natural gas–air mixture. J. Hazard. Mater. 2005, 119, 81–84.

[7]

Rodhe, H. A comparison of the contribution of various gases to the greenhouse-effect. Science 1990, 248, 1217–1219.

[8]

Sher Shah, M. S. A.; Oh, C.; Park, H.; Hwang, Y. J.; Ma, M.; Park, J. H. Catalytic oxidation of methane to oxygenated products: Recent advancements and prospects for electrocatalytic and photocatalytic conversion at low temperatures. Adv. Sci. 2020, 7, 2001946.

[9]

Wang, Y. L.; Hu, P.; Yang, J.; Zhu, Y. A.; Chen, D. C–H bond activation in light alkanes: A theoretical perspective. Chem. Soc. Rev. 2021, 50, 4299–4358.

[10]
Anh, N. T.; Maurel, F. Use and misuse of frontier orbital theory. New J. Chem. 1997 , 21, 861–871.
[11]

Liu, F. M.; Zhang, Y. Q.; Yu, Y. S.; Xu, J.; Sun, J. B.; Lu, G. Y. Enhanced sensing performance of catalytic combustion methane sensor by using Pd nanorod/γ-Al2O3. Sens. Actuators B: Chem. 2011, 160, 1091–1097.

[12]

Lin, S.; Chang, J.; Sun, J. C.; Xu, P. Improvement of the detection sensitivity for tunable diode laser absorption spectroscopy: A review. Front. Phys. 2022, 10, 853966.

[13]

Sekhar, P. K.; Kysar, J.; Brosha, E. L.; Kreller, C. R. Development and testing of an electrochemical methane sensor. Sens. Actuators B: Chem. 2016, 228, 162–167.

[14]

Mao, X. F.; Zheng, P. C.; Wang, X. F.; Yuan, S. Z. Breath methane detection based on all-optical photoacoustic spectrometer. Sens. Actuators B: Chem. 2017, 239, 1257–1260.

[15]

Bassous, N. J.; Rodriguez, A. C.; Leal, C. I. L.; Jung, H. Y.; Lee, C. K.; Joo, S.; Kim, S.; Yun, C. H.; Hahm, M. G.; Ahn, M. H. et al. Significance of various sensing mechanisms for detecting local and atmospheric greenhouse gases: A review. Adv. Sens. Res. 2024, 3, 2300094.

[16]

Chen, R. S.; Wang, J.; Xia, Y.; Xiang, L. Near infrared light enhanced room-temperature NO2 gas sensing by hierarchical ZnO nanorods functionalized with PbS quantum dots. Sens. Actuators B: Chem. 2018, 255, 2538–2545.

[17]

Bowen, W. Research on nonlinear calibration of mine catalytic-combustion-based combustible-gas sensor based on RBF neural network. Heliyon 2023, 9, e14055.

[18]

Krishna, K. G.; Parne, S.; Pothukanuri, N.; Kathirvelu, V.; Gandi, S.; Joshi, D. Nanostructured metal oxide semiconductor-based gas sensors: A comprehensive review. Sens. Actuators A: Phys. 2022, 341, 113578.

[19]

Korotcenkov, G.; Cho, B. K. Metal oxide composites in conductometric gas sensors: Achievements and challenges. Sens. Actuators B: Chem. 2017, 244, 182–210.

[20]

Ji, H. C.; Zeng, W.; Li, Y. Q. Gas sensing mechanisms of metal oxide semiconductors: A focus review. Nanoscale 2019, 11, 22664–22684.

[21]

Guo, Y. B.; Liu, C. C.; Wang, D. G.; He, R. Y. Advances in the development of methane sensors with gas-sensing materials. Chin. Sci. Bull. 2019, 64, 1456–1470.

[22]

Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng.: B 2018, 229, 206–217.

[23]

Jiao, M. Z.; Chen, X. Y.; Hu, K. X.; Qian, D. Y.; Zhao, X. H.; Ding, E. J. Recent developments of nanomaterials-based conductive type methane sensors. Rare Met. 2021, 40, 1515–1527.

[24]

Kim, H. J.; Lee, J. H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuators B: Chem. 2014, 192, 607–627.

[25]

Gautam, Y. K.; Sharma, K.; Tyagi, S.; Ambedkar, A. K.; Chaudhary, M.; Pal Singh, B. Nanostructured metal oxide semiconductor-based sensors for greenhouse gas detection: Progress and challenges. R. Soc. Open Sci. 2021, 8, 201324.

[26]

Fu, L.; You, S. X.; Li, G. J.; Li, X. X.; Fan, Z. C. Application of semiconductor metal oxide in chemiresistive methane gas sensor: Recent developments and future perspectives. Molecules 2023, 28, 6710.

[27]

Bai, S. L.; Liu, X.; Li, D. Q.; Chen, S.; Luo, R. X.; Chen, A. F. Synthesis of ZnO nanorods and its application in NO2 sensors. Sens. Actuators B: Chem. 2011, 153, 110–116.

[28]
China National Standard. 2019. Combustible gas detectors-Part 1: Point-type combustible gas detectors for industrial and commercial use [in Chinese] (GB 15322.1–2019).
[29]

Vuong, N. M.; Kim, D.; Kim, H. Surface gas sensing kinetics of a WO3 nanowire sensor: Part 2—Reducing gases. Sens. Actuators B: Chem. 2016, 224, 425–433.

[30]

Brinzari, V.; Korotcenkov, G. Kinetic approach to receptor function in chemiresistive gas sensor modeling of tin dioxide. Steady state consideration. Sens. Actuators B: Chem. 2018, 259, 443–454.

[31]

Zhang, S. S.; Li, Y. W.; Sun, G.; Zhang, B.; Wang, Y.; Cao, J. L.; Zhang, Z. Y. Synthesis of NiO-decorated ZnO porous nanosheets with improved CH4 sensing performance. Appl. Surf. Sci. 2019, 497, 143811.

[32]

Vuong, N. M.; Hieu, N. M.; Hieu, H. N.; Yi, H.; Kim, D.; Han, Y. S.; Kim, M. Ni2O3-decorated SnO2 particulate films for methane gas sensors. Sens. Actuators B: Chem. 2014, 192, 327–333.

[33]

Lu, W. B.; Ding, D. G.; Xue, Q. Z.; Du, Y. G.; Xiong, Y.; Zhang, J. Q.; Pan, X. L.; Xing, W. Great enhancement of CH4 sensitivity of SnO2 based nanofibers by heterogeneous sensitization and catalytic effect. Sens. Actuators B: Chem. 2018, 254, 393–401.

[34]

Li, X.; Tan, T.; Ji, W.; Zhou, W. L.; Bao, Y. W.; Xia, X. H.; Zeng, Z. F.; Gao, Y. Remarkably enhanced methane sensing performance at room temperature via constructing a self-assembled mulberry-like ZnO/SnO2 hierarchical structure. Energy Environ. Mater. 2024, 7, e12624.

[35]

Zhang, Y. J.; Cao, J. L.; Wang, Y. Ultrahigh methane sensing properties based on Ni-doped hierarchical porous In2O3 microspheres at low temperature. Vacuum 2022, 202, 111149.

[36]

Wang, Y.; Sun, X. Y.; Cao, J. L. Enhanced methane sensing performance of Ag modified In2O3 microspheres. J. Alloys Compd. 2022, 895, 162557.

[37]

Chien, F. S. S.; Wang, C. R.; Chan, Y. L.; Lin, H. L.; Chen, M. H.; Wu, R. J. Fast-response ozone sensor with ZnO nanorods grown by chemical vapor deposition. Sens. Actuators B: Chem. 2010, 144, 120–125.

[38]

Zhou, Q.; Chen, W. G.; Xu, L. N.; Peng, S. D. Hydrothermal synthesis of various hierarchical ZnO nanostructures and their methane sensing properties. Sensors 2013, 13, 6171–6182.

[39]

Yang, X. Y.; Deng, Y.; Yang, H. T.; Liao, Y. Z.; Cheng, X. W.; Zou, Y. D.; Wu, L. M.; Deng, Y. H. Functionalization of mesoporous semiconductor metal oxides for gas sensing: Recent advances and emerging challenges. Adv. Sci. 2023, 10, e2204810.

[40]

Zhu, X. J.; Zhang, X. L.; Chang, X. T.; Li, J. F.; Pan, L. K.; Jiang, Y. C.; Gao, W. X.; Gao, C. Y.; Sun, S. B. Metal-organic framework-derived porous SnO2 nanosheets with grain sizes comparable to Debye length for formaldehyde detection with high response and low detection limit. Sens. Actuators B: Chem. 2021, 347, 130599.

[41]

Alenezi, M. R.; Alzanki, T. H.; Almeshal, A. M.; Alshammari, A. S.; Beliatis, M. J.; Henley, S. J.; Silva, S. R. P. A model for the impact of the nanostructure size on its gas sensing properties. RSC Adv. 2015, 5, 103195–103202.

[42]

Al-Hashem, M.; Akbar, S.; Morris, P. Role of oxygen vacancies in nanostructured metal-oxide gas sensors: A review. Sens. Actuators B: Chem. 2019, 301, 126845.

[43]

Luo, N.; Wang, C.; Zhang, D.; Guo, M. M.; Wang, X. H.; Cheng, Z. X.; Xu, J. Q. Ultralow detection limit MEMS hydrogen sensor based on SnO2 with oxygen vacancies. Sens. Actuators B: Chem. 2022, 354, 130982.

[44]

Hussain, T.; Kaewmaraya, T.; Khan, M.; Chakraborty, S.; Islam, M. S.; Amornkitbamrung, V.; Ahuja, R. Improved sensing characteristics of methane over ZnO nano sheets upon implanting defects and foreign atoms substitution. Nanotechnology 2017, 28, 415502.

[45]

Yuan, H. Y.; Aljneibi, S. A. A. A.; Yuan, J. R.; Wang, Y. X.; Liu, H.; Fang, J.; Tang, C. H.; Yan, X. H.; Cai, H.; Gu, Y. D. et al. ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing. Adv. Mater. 2019, 31, 1807161.

[46]

Ahn, M. W.; Park, K. S.; Heo, J. H.; Park, J. G.; Kim, D. W.; Choi, K. J.; Lee, J. H.; Hong, S. H. Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl. Phys. Lett. 2008, 93, 263103.

[47]

Tang, W.; Wang, J. Enhanced gas sensing mechanisms of metal oxide heterojunction gas sensors. Acta Phys. Chim. Sin. 2016, 32, 1087–1104.

[48]

Miller, D. R.; Akbar, S. A.; Morris, P. A. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sens. Actuators B: Chem. 2014, 204, 250–272.

[49]

Zhang, S. S.; Li, Y. W.; Sun, G.; Zhang, B.; Wang, Y.; Cao, J. L.; Zhang, Z. Y. Enhanced methane sensing properties of porous NiO nanaosheets by decorating with SnO2. Sens. Actuators B: Chem. 2019, 288, 373–382.

[50]

Li, X. J.; Li, Y. W.; Sun, G.; Luo, N.; Zhang, B.; Zhang, Z. Y. Synthesis of a flower-like g-C3N4/ZnO hierarchical structure with improved CH4 sensing properties. Nanomaterials 2019, 9, 724.

[51]

Horastani, Z. K.; Sayedi, S. M.; Sheikhi, M. H. Effect of single wall carbon nanotube additive on electrical conductivity and methane sensitivity of SnO2. Sens. Actuators B: Chem. 2014, 202, 461–468.

[52]

Navazani, S.; Hassanisadi, M.; Eskandari, M. M.; Talaei, Z. Design and evaluation of SnO2-Pt/MWCNTs hybrid system as room temperature-methane sensor. Synth. Met. 2020, 260, 116267.

[53]

Kooti, M.; Keshtkar, S.; Askarieh, M.; Rashidi, A. Progress toward a novel methane gas sensor based on SnO2 nanorods-nanoporous graphene hybrid. Sens. Actuators B: Chem. 2019, 281, 96–106.

[54]

Lee, E.; VahidMohammadi, A.; Yoon, Y. S.; Beidaghi, M.; Kim, D. J. Two-dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases. ACS Sens. 2019, 4, 1603–1611.

[55]

Wang, F. P.; Liu, H. C.; Hu, K. L.; Li, Y. Q.; Zeng, W.; Zeng, L. Hierarchical composites of MoS2 nanoflower anchored on SnO2 nanofiber for methane sensing. Ceram. Int. 2019, 45, 22981–22986.

[56]

Mondal, B.; Das, J.; Roychaudhuri, C.; Mukharjee, N.; Saha, H. Enhanced sensing properties of ZnO-SnO2 based composite type gas sensor. Eur. Phys. J. Appl. Phys. 2016, 73, 10301.

[57]

Sahoo, T.; Kale, P. Work function-based metal-oxide-semiconductor hydrogen sensor and its functionality: A review. Adv. Mater. Interfaces 2021, 8, 2100649.

[58]

Teichner, S. J. Recent studies in hydrogen and oxygen spillover and their impact on catalysis. Appl. Catal. 1990, 62, 1–10.

[59]

Zhu, L. Y.; Ou, L. X.; Mao, L. W.; Wu, X. Y.; Liu, Y. P.; Lu, H. L. Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: Overview. Nano-Micro Lett. 2023, 15, 89.

[60]

He, Y. Y.; Jiao, M. Z. A mini-review on metal oxide semiconductor gas sensors for carbon monoxide detection at room temperature. Chemosensors 2024, 12, 55.

[61]

Gai, L. Y.; Lai, R. P.; Dong, X. H.; Wu, X.; Luan, Q. T.; Wang, J.; Lin, H. F.; Ding, W. H.; Wu, G. L.; Xie, W. F. Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions. Rare Met. 2022, 41, 1818–1842.

[62]

Kumar, R.; Liu, X. H.; Zhang, J.; Kumar, M. Room-temperature gas sensors under photoactivation: From metal oxides to 2D materials. Nano-Micro Lett. 2020, 12, 164.

[63]

Li, Z. H.; Boda, M. A.; Pan, X. Y.; Yi, Z. G. Photocatalytic oxidation of small molecular hydrocarbons over ZnO nanostructures: The difference between methane and ethylene and the impact of polar and nonpolar facets. ACS Sustain. Chem. Eng. 2019, 7, 19042–19049.

[64]

Liu, Z.; Xu, B. Y.; Jiang, Y. J.; Zhou, Y.; Sun, X. L.; Wang, Y. Y.; Zhu, W. L. Photocatalytic conversion of methane: Current state of the art, challenges, and future perspectives. ACS Environ. Au 2023, 3, 252–276.

[65]

Melnick, D. A. Zinc oxide photoconduction, an oxygen adsorption process. J. Chem. Phys. 1957, 26, 1136–1146.

[66]

Barry, T. I.; Stone, F. S. The reactions of oxygen at dark and irradiated zinc oxide surface. Proc. R. Soc. Lond. A Math. Phys. Sci. 1960, 255, 124–144.

[67]

Wang, J.; Fan, S. Y.; Xia, Y.; Yang, C.; Komarneni, S. Room-temperature gas sensors based on ZnO nanorod/Au hybrids: Visible-light-modulated dual selectivity to NO2 and NH3. J. Hazard. Mater. 2020, 381, 120919.

[68]

Zhai, J. L.; Wang, T.; Wang, C.; Liu, D. C. UV-light-assisted ethanol sensing characteristics of g-C3N4/ZnO composites at room temperature. Appl. Surf. Sci. 2018, 441, 317–323.

[69]

Cui, J. B.; Shi, L. Q.; Xie, T. F.; Wang, D. J.; Lin, Y. H. UV-light illumination room temperature HCHO gas-sensing mechanism of ZnO with different nanostructures. Sens. Actuators B: Chem. 2016, 227, 220–226.

[70]

Kimiagar, S.; Najafi, V.; Witkowski, B.; Pietruszka, R.; Godlewski, M. High performance and low temperature coal mine gas sensor activated by UV-irradiation. Sci. Rep. 2018, 8, 16298.

[71]

Johnston, M. B.; Herz, L. M. Hybrid perovskites for photovoltaics: Charge-carrier recombination, diffusion, and radiative efficiencies. Acc. Chem. Res. 2016, 49, 146–154.

[72]

Zhang, H. S.; Wang, Y.; Sun, X. Y.; Wang, Y. H.; Li, M. W.; Cao, J. L.; Qin, C. Enhanced CH4 sensing performances of g-C3N4 modified ZnO nanospheres sensors under visible-light irradiation. Mater. Res. Bull. 2023, 165, 112290.

[73]

Zhang, X. H.; Wang, C.; Zhang, M. L.; Luo, D. X.; Ye, S. Y.; Weng, B. Surface plasmon resonance-mediated photocatalytic H2 generation. ChemSusChem 2024, 17, e202400513.

[74]

Chen, X. X.; Li, Y. P.; Pan, X. Y.; Cortie, D.; Huang, X. T.; Yi, Z. G. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nat. Commun. 2016, 7, 12273.

[75]

Reddy, N. L.; Rao, V. N.; Vijayakumar, M.; Santhosh, R.; Anandan, S.; Karthik, M.; Shankar, M. V.; Reddy, K. R.; Shetti, N. P.; Nadagouda, M. N. et al. A review on frontiers in plasmonic nano-photocatalysts for hydrogen production. Int. J. Hydrogen Energy 2019, 44, 10453–10472.

[76]

Xia, Y.; Wang, J.; Xu, L.; Li, X.; Huang, S. J. A room-temperature methane sensor based on Pd-decorated ZnO/rGO hybrids enhanced by visible light photocatalysis. Sens. Actuators B: Chem. 2020, 304, 127334.

[77]

Chen, R. S.; Wang, J.; Luo, S. R.; Xiang, L.; Li, W. W.; Xie, D. Unraveling photoexcited electron transfer pathway of oxygen vacancy-enriched ZnO/Pd hybrid toward visible light-enhanced methane detection at a relatively low temperature. Appl. Catal. B: Environ. 2020, 264, 118554.

[78]

Li, X. Y.; Wang, C.; Tang, J. W. Methane transformation by photocatalysis. Nat. Rev. Mater. 2022, 7, 617–632.

[79]

Burch, R.; Loader, P. K.; Urbano, F. J. Some aspects of hydrocarbon activation on platinum group metal combustion catalysts. Catal. Today 1996, 27, 243–248.

[80]

Gensch, T.; James, M. J.; Dalton, T.; Glorius, F. Increasing catalyst efficiency in C–H activation catalysis. Angew. Chem., Int. Ed. 2018, 57, 2296–2306.

[81]

Chen, Y.; Zhang, W. S.; Luo, N.; Wang, W.; Xu, J. Q. Defective ZnO nanoflowers decorated by ultra-fine Pd clusters for low-concentration CH4 sensing: Controllable preparation and sensing mechanism analysis. Coatings 2022, 12, 677.

[82]

Haridas, D.; Gupta, V. Enhanced response characteristics of SnO2 thin film based sensors loaded with Pd clusters for methane detection. Sens. Actuators B: Chem. 2012, 166–167, 156–164.

[83]

Wang, Y.; Meng, X. N.; Yao, M. X.; Sun, G.; Zhang, Z. Y. Enhanced CH4 sensing properties of Pd modified ZnO nanosheets. Ceram. Int. 2019, 45, 13150–13157.

[84]

Xue, D. P.; Wang, P. T.; Zhang, Z. Y.; Wang, Y. Enhanced methane sensing property of flower-like SnO2 doped by Pt nanoparticles: A combined experimental and first-principle study. Sens. Actuators B: Chem. 2019, 296, 126710.

[85]

Zhang, B.; Wang, Y.; Meng, X. N.; Zhang, Z. Y.; Mu, S. F. High response methane sensor based on Au-modified hierarchical porous nanosheets-assembled ZnO microspheres. Mater. Chem. Phys. 2020, 250, 123027.

[86]

Li, M. W.; Sun, X. Y.; Wang, Y. H.; Qin, C.; Cao, J. L.; Wang, Y. Light-driven room temperature methane gas sensor based on Ag modified flower-like ZnO microsphere. Sens. Diagn. 2023, 2, 878–886.

[87]

Hellman, A.; Resta, A.; Martin, N. M.; Gustafson, J.; Trinchero, A.; Carlsson, P. A.; Balmes, O.; Felici, R.; Van Rijn, R.; Frenken, J. W. M. et al. The active phase of palladium during methane oxidation. J. Phys. Chem. Lett. 2012, 3, 678–682.

[88]

Mehar, V.; Kim, M.; Shipilin, M.; Van Den Bossche, M.; Gustafson, J.; Merte, L. R.; Hejral, U.; Grönbeck, H.; Lundgren, E.; Asthagiri, A. et al. Understanding the intrinsic surface reactivity of single-layer and multilayer PdO (101) on Pd (100). ACS Catal. 2018, 8, 8553–8567.

[89]

Weaver, J. F.; Hakanoglu, C.; Hawkins, J. M.; Asthagiri, A. Molecular adsorption of small alkanes on a PdO (101) thin film: Evidence of σ-complex formation. J. Chem. Phys. 2010, 132, 024709.

[90]

Weaver, J. F.; Hinojosa, J. A. Jr.; Hakanoglu, C.; Antony, A.; Hawkins, J. M.; Asthagiri, A. Precursor-mediated dissociation of n-butane on a PdO (101) thin film. Catal. Today 2011, 160, 213–227.

[91]

Vottero, E.; Groppo, E.; Piovano, A. Supported metal nanoparticles-based catalysts and their interactions with H2: Insights from inelastic neutron scattering spectroscopy. ChemCatChem 2024, 16, e202301127.

[92]

Arevalo, R. L.; Aspera, S. M.; Nakanishi, H. Sulfation of a PdO (101) methane oxidation catalyst: Mechanism revealed by first principles calculations. Catal. Sci. Technol. 2019, 9, 232–240.

[93]

Schwach, P.; Pan, X. L.; Bao, X. H. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: Challenges and prospects. Chem. Rev. 2017, 117, 8497–8520.

[94]

Wang, J. C.; Shi, W. N.; Sun, X. Q.; Wu, F. Y.; Li, Y.; Hou, Y. X. Enhanced photo-assisted acetone gas sensor and efficient photocatalytic degradation using Fe-doped hexagonal and monoclinic WO3 phase-junction. Nanomaterials 2020, 10, 398.

[95]

Li, X. X.; Wang, X.; Sun, Z. K.; Li, F. F.; Fu, Y.; Zhao, K. Y.; Zhao, G.; Zhu, C. G.; Xu, X. J. Surface free radicals activated CoP/MoS2 sensors through electrocatalytic water splitting for enhanced NO2 sensing at room temperatures. Chem. Eng. J. 2024, 495, 153381.

[96]

Xia, Y.; Guo, S. H.; Yang, L.; He, S. F.; Zhou, L. X.; Wang, M. J.; Gao, J. Y.; Hou, M.; Wang, J.; Komarneni, S. Enhanced free-radical generation on MoS2/Pt by light and water vapor co-activation for selective CO detection with high sensitivity. Adv. Mater. 2023, 35, 2303523.

[97]

Han, L. Y.; Zhang, S. S.; Zhang, B.; Zhang, B. W.; Wang, Y.; Bala, H.; Zhang, Z. Y. Dual-selective detection of CO and CH4 based on hierarchical porous In2O3 nanoflowers with Pd modification. J. Materiomics 2022, 8, 545–555.

[98]

Bunpang, K.; Wisitsoraat, A.; Tuantranont, A.; Singkammo, S.; Phanichphant, S.; Liewhiran, C. Highly selective and sensitive CH4 gas sensors based on flame-spray-made Cr-doped SnO2 particulate films. Sens. Actuators B: Chem. 2019, 291, 177–191.

[99]

Tshabalala, Z. P.; Shingange, K.; Dhonge, B. P.; Ntwaeaborwa, O. M.; Mhlongo, G. H.; Motaung, D. E. Fabrication of ultra-high sensitive and selective CH4 room temperature gas sensing of TiO2 nanorods: Detailed study on the annealing temperature. Sens. Actuators B: Chem. 2017, 238, 402–419.

[100]

Anjitha, R. G.; Basu, P. K. Dual activation and photocatalyst-induced selective detection in defect tuned Pd-ZnO thin films for low ppm detection of CH and CO. IEEE Sens. J. 2023, 23, 143–153.

[101]

Wang, Q.; Zhang, L. S.; Wu, J. F.; Wang, W. D.; Song, W. G.; Wang, W. A parallel solid-state NMR and sensor property study on flower-like nanostructured SnO2. J. Phys. Chem. C 2010, 114, 22671–22676.

[102]

Zhang, J. Y.; Shu, M.; Niu, Y. X.; Yi, L.; Yi, H. H.; Zhou, Y. S.; Zhao, S. Z.; Tang, X. L.; Gao, F. Y. Advances in CO catalytic oxidation on typical noble metal catalysts: Mechanism, performance and optimization. Chem. Eng. J. 2024, 495, 153523.

[103]

Zhao, S. K.; Guan, B.; Zhuang, Z. Q.; Chen, J. Y.; Zhu, C. Y.; Hu, X. H.; Ma, Z. R.; Guo, J. F.; Dang, H. T.; Shu, K. Y. et al. Removing ammonia from exhaust gas through selective catalytic oxidation reaction: Research status and future perspectives. J. Cleaner Prod. 2024, 467, 142771.

[104]

Shao, M. H. Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions. J. Power Sources 2011, 196, 2433–2444.

[105]

Li, G. J.; Wang, X. H.; Yan, L. M.; Wang, Y.; Zhang, Z. Y.; Xu, J. Q. PdPt bimetal-functionalized SnO2 nanosheets: Controllable synthesis and its dual selectivity for detection of carbon monoxide and methane. ACS Appl. Mater. Interfaces 2019, 11, 26116–26126.

[106]

Nasresfahani, S.; Sheikhi, M. H.; Tohidi, M.; Zarifkar, A. Methane gas sensing properties of Pd-doped SnO2/reduced graphene oxide synthesized by a facile hydrothermal route. Mater. Res. Bull. 2017, 89, 161–169.

[107]

Xue, D. P.; Zhang, Z. Y.; Wang, Y. Enhanced methane sensing performance of SnO2 nanoflowers based sensors decorated with Au nanoparticles. Mater. Chem. Phys. 2019, 237, 121864.

[108]

Liang, J. R.; Liu, J. F.; Li, N.; Li, W. J. Magnetron sputtered Au-decorated vanadium oxides composite thin films for methane-sensing properties at room temperature. J. Alloys Compd. 2016, 671, 283–290.

[109]

Navazani, S.; Shokuhfar, A.; Hassanisadi, M.; Askarieh, M.; Di Carlo, A.; Agresti, A. Facile synthesis of a SnO2@rGO nanohybrid and optimization of its methane-sensing parameters. Talanta 2018, 181, 422–430.

[110]

Zhang, D. Z.; Chang, H. Y.; Sun, Y.; Jiang, C. X.; Yao, Y.; Zhang, Y. Fabrication of platinum-loaded cobalt oxide/molybdenum disulfide nanocomposite toward methane gas sensing at low temperature. Sens. Actuators B: Chem. 2017, 252, 624–632.

[111]

Yang, L. P.; Wang, Z.; Zhou, X. Y.; Wu, X. F.; Han, N.; Chen, Y. F. Synthesis of Pd-loaded mesoporous SnO2 hollow spheres for highly sensitive and stable methane gas sensors. RSC Adv. 2018, 8, 24268–24275.

[112]

Tournier, G.; Pijolat, C. Selective filter for SnO-based gas sensor: Application to hydrogen trace detection. Sens. Actuators B: Chem. 2005, 106, 553–562.

[113]

Mosadegh Sedghi, S.; Mortazavi, Y.; Khodadadi, A. Low temperature CO and CH4 dual selective gas sensor using SnO2 quantum dots prepared by sonochemical method. Sens. Actuators B: Chem. 2010, 145, 7–12.

[114]

Wang, Y.; Cui, Y. Y.; Meng, X. N.; Zhang, Z. Y.; Cao, J. L. A gas sensor based on Ag-modified ZnO flower-like microspheres: Temperature-modulated dual selectivity to CO and CH4. Surf. Interfaces 2021, 24, 101110.

[115]

Zhang, W. S.; Yuan, T. W.; Wang, X. H.; Cheng, Z. X.; Xu, J. Q. Coal mine gases sensors with dual selectivity at variable temperatures based on a W18O49 ultra-fine nanowires/Pd@Au bimetallic nanoparticles composite. Sens. Actuators B: Chem. 2022, 354, 131004.

[116]

Chu, T. S.; Rong, C.; Zhou, L.; Mao, X. Y.; Zhang, B. W.; Xuan, F. Z. Progress and perspectives of single-atom catalysts for gas sensing. Adv. Mater. 2023, 35, e2206783.

[117]

Wang, Y.; Zhang, H. S.; Cao, J. L. Synthesis and low temperature methane sensing performance of Pd modified In2O3 microspheres. Mater. Chem. Phys. 2022, 279, 125749.

[118]

Schweizer-Berberich, M.; Strathmann, S.; Göpel, W.; Sharma, R.; Peyre-Lavigne, A. Fillers for tin dioxide CO gas sensors to pass the UL2034 standard. Sens. Actuators B: Chem. 2000, 66, 34–36.

[119]

Meng, X.; Zhang, Q. Y.; Zhang, S. P.; He, Z. The enhanced H2 selectivity of SnO2 gas sensors with the deposited SiO2 filters on surface of the sensors. Sensors 2019, 19, 2478.

[120]

Fleischer, M.; Meixner, H. Selectivity in high-temperature operated semiconductor gas-sensors. Sens. Actuators B: Chem. 1998, 52, 179–187.

[121]

Fleischer, M.; Kornely, S.; Weh, T.; Frank, J.; Meixner, H. Selective gas detection with high-temperature operated metal oxides using catalytic filters. Sens. Actuators B: Chem. 2000, 69, 205–210.

[122]

Wu, R. J.; Tian, L.; Li, H.; Liu, H. B.; Luo, J. X.; Tian, X. M.; Hua, Z. Q.; Wu, Y.; Fan, S. R. A selective methane gas sensor based on metal oxide semiconductor equipped with an on-chip microfilter. Sens. Actuators B: Chem. 2022, 359, 131557.

[123]

Xu, J. Q.; Shun, Y.; Pan, Q. Y.; Qin, J. H. Sensing characteristics of double layer film of ZnO. Sens. Actuators B: Chem. 2000, 66, 161–163.

[124]

Zhao, Y. X.; Wang, S. H.; Yuan, W. J.; Fan, S. R.; Hua, Z. Q.; Wu, Y.; Tian, X. M. Selective detection of methane by Pd-In2O3 sensors with a catalyst filter film. Sens. Actuators B: Chem. 2021, 328, 129030.

[125]

Park, J.; Kim, D.; Byun, S. W.; Shin, H.; Ju, Y.; Min, H.; Kim, Y. J.; Heo, I.; Hazlett, M. J.; Kim, M. et al. Impact of Pd:Pt ratio of Pd/Pt bimetallic catalyst on CH4 oxidation. Appl. Catal. B: Environ. 2022, 316, 121623.

[126]

Fateminia, F. S.; Mortazavi, Y.; Khodadadi, A. A. Au-promoted Ce-Zr catalytic filter for Pt/SnO2 sensor to selectively detect methane and ethanol in the presence of interfering indoor gases. Mater. Sci. Semicond. Process. 2019, 90, 182–189.

[127]

Vilaseca, M.; Coronas, J.; Cirera, A.; Cornet, A.; Morante, J. R.; Santamarı́a, J. Use of zeolite films to improve the selectivity of reactive gas sensors. Catal. Today 2003, 82, 179–185.

[128]

Zhou, T. T.; Sang, Y. T.; Wang, X. X.; Wu, C. Y.; Zeng, D. W.; Xie, C. S. Pore size dependent gas-sensing selectivity based on ZnO@ZIF nanorod arrays. Sens. Actuators B: Chem. 2018, 258, 1099–1106.

[129]

Zhang, C.; Lively, R. P.; Zhang, K.; Johnson, J. R.; Karvan, O.; Koros, W. J. Unexpected molecular sieving properties of zeolitic imidazolate framework-8. J. Phys. Chem. Lett. 2012, 3, 2130–2134.

[130]

Luo, S. R.; Chen, R. S.; Wang, J.; Xie, D.; Xiang, L. Designed synthesis of ZnO/Pd@ZIF-8 hybrid structure for highly sensitive and selective detection of methane in the presence of NO2. Sens. Actuators B: Chem. 2021, 344, 130220.

[131]

Shakya, D. M.; Ejegbavwo, O. A.; Rajeshkumar, T.; Senanayake, S. D.; Brandt, A. J.; Farzandh, S.; Acharya, N.; Ebrahim, A. M.; Frenkel, A. I.; Rui, N. et al. Selective catalytic chemistry at Rhodium(II) nodes in bimetallic metal-organic frameworks. Angew. Chem., Int. Ed. 2019, 58, 16533–16537.

[132]

Wang, H.; Peng, J. J.; Li, J. Ligand functionalization in metal-organic frameworks for enhanced carbon dioxide adsorption. Chem. Rec. 2016, 16, 1298–1310.

[133]

Chen, R. J.; Luo, S. R.; Xia, Y.; Xiang, L. Highly selective methane sensing based on enhanced dual sieving effects by ZnO/Pd@Co node-replaced ZIF-8 nanorods. J. Environ. Chem. Eng. 2024, 12, 112497.

[134]

Krishna, R.; Van Baten, J. M. Describing mixture diffusion in microporous materials under conditions of pore saturation. J. Phys. Chem. C 2010, 114, 11557–11563.

[135]

Zhang, S. S.; Li, J. T.; Han, L. Y.; Zhang, B. W.; Wang, Y.; Zhang, Z. Y. Preparation of porous NiO/In2O3 nanoflower-like composites and their dual selectivity for CO/CH4. Mater. Res. Bull. 2023, 165, 112332.

[136]

Wang, Y.; Tong, M. M.; Zhang, D.; Gao, Z. Improving the performance of catalytic combustion type methane gas sensors using nanostructure elements doped with rare earth cocatalysts. Sensors 2011, 11, 19–31.

[137]

Korotcenkov, G.; Cho, B. K. Engineering approaches to improvement of conductometric gas sensor parameters. Part 2: Decrease of dissipated (consumable) power and improvement stability and reliability. Sens. Actuators B: Chem. 2014, 198, 316–341.

[138]

Zhu, Y.; Hou, M.; Yang, L.; Zhang, S. P.; Zhang, G. Z.; Guo, S. H. A facile strategy to rapidly screening gas-sensitive materials in large samples: A case study of surface modified SnO2 for CH4 detection. IEEE Sens. J. 2024, 24, 15004–15010.

[139]

Wang, X. H.; Li, Y. W.; Jin, X. H.; Sun, G.; Cao, J. L.; Wang, Y. Effectively improved CH4 sensing performance of In2O3 porous hollow nanospheres by doping with Cd. Langmuir 2024, 40, 24740–24749.

[140]

Jeon, I. S.; Bae, G.; Jang, M.; Yoon, Y.; Jang, S.; Song, W.; Myung, S.; Lim, J.; Lee, S. S.; Jung, H. K. et al. Atomic-level mediation in structural interparameter tradeoff of zinc oxide nanowires-based gas sensors: ZnO nanofilm/ZnO nanowire homojunction array. Appl. Surf. Sci. 2021, 540, 148350.

[141]

Korotcenkov, G.; Han, S. D.; Cho, B. K.; Brinzari, V. Grain size effects in sensor response of nanostructured SnO2- and In2O3-based conductometric thin film gas sensor. Crit. Rev. Solid State Mater. Sci. 2009, 34, 1–17.

[142]

Lee, J.; Zhang, S.; Sun, S. H. High-temperature solution-phase syntheses of metal-oxide nanocrystals. Chem. Mater. 2013, 25, 1293–1304.

[143]

Korotcenkov, G.; Cho, B. K. The role of grain size on the thermal instability of nanostructured metal oxides used in gas sensor applications and approaches for grain-size stabilization. Prog. Cryst. Growth Charact. Mater. 2012, 58, 167–208.

[144]

Kim, K. J.; Lee, Y. L.; Hong, G. R.; Ahn, S. Y.; Kim, B. J.; Lee, S. S.; Jeon, Y.; Roh, H. S. A study on the activity recovery behavior of noble metal catalysts against sulfur poisoning. Catal. Today 2024, 425, 114361.

[145]

Zhang, S. W.; Yuan, Z. Y.; Kong, L.; Wu, Z. X.; Meng, F. L. Drift-like effect compensation for the cyclic temperature operation of semiconductor gas sensor. IEEE Trans. Ind. Electron. 2025, 72, 2140–2149.

[146]

Se, H.; Song, K.; Liu, H.; Zhang, W. Y.; Wang, X. H.; Liu, J. J. A dual drift compensation framework based on subspace learning and cross-domain adaptive extreme learning machine for gas sensors. Knowl. Based Syst. 2023, 259, 110024.

[147]

Zhai, S. C.; Han, M. Y.; Li, Z.; Yang, S. J.; Duan, S. K.; Yan, J. M2FL-CCC: Multibranch multilayer feature leaning and comprehensive classification criterion for gas sensor drift compensation. IEEE Trans. Instrum. Meas. 2023, 72, 2521312.

[148]

Wang, J.; Hu, C. Y.; Xia, Y.; Zhang, B. Mesoporous ZnO nanosheets with rich surface oxygen vacancies for UV-activated methane gas sensing at room temperature. Sens. Actuators B: Chem. 2021, 333, 129547.

[149]

Xu, H. Y.; Li, J. Z.; Fu, Y.; Tian, Y. W.; Yang, Z. D. Sensitized mechanism of recovered S-SnO2 from tin sludge for CH4 detection by increasing oxygen vacancy density as an efficient strategy. Sens. Actuators B: Chem. 2019, 298, 126838.

[150]

Bonu, V.; Das, A.; Prasad, A. K.; Krishna, N. G.; Dhara, S.; Tyagi, A. K. Influence of in-plane and bridging oxygen vacancies of SnO2 nanostructures on CH4 sensing at low operating temperatures. Appl. Phys. Lett. 2014, 105, 243102.

[151]

Carrasco, J.; Lopez, N.; Illas, F. First principles analysis of the stability and diffusion of oxygen vacancies in metal oxides. Phys. Rev. Lett. 2004, 93, 225502.

[152]

Schaub, R.; Wahlström, E.; Rønnau, A.; Lægsgaard, E.; Stensgaard, I.; Besenbacher, F. Oxygen-mediated diffusion of oxygen vacancies on the TiO2 (110) surface. Science 2003, 299, 377–379.

[153]

Blackman, C. Do we need “ionosorbed” oxygen species? (Or, “a surface conductivity model of gas sensitivity in metal oxides based on variable surface oxygen vacancy concentration”). ACS Sens. 2021, 6, 3509–3516.

[154]

Kumar, A.; Gupta, G.; Bapna, K.; Shivagan, D. D. Semiconductor-metal-oxide-based nano-composites for humidity sensing applications. Mater. Res. Bull. 2023, 158, 112053.

[155]

Zhang, D. Z.; Wang, M. Y.; Tang, M. C.; Song, X. S.; Zhang, X. X.; Kang, Z. J.; Liu, X. H.; Zhang, J. H.; Xue, Q. Z. Recent progress of diversiform humidity sensors based on versatile nanomaterials and their prospective applications. Nano Res. 2023, 16, 11938–11958.

[156]

Farahani, H.; Wagiran, R.; Hamidon, M. N. Humidity sensors principle, mechanism, and fabrication technologies: A comprehensive review. Sensors 2014, 14, 7881–7939.

[157]

Agmon, N. The grotthuss mechanism. Chem. Phys. Lett. 1995, 244, 456–462.

[158]

Jia, M.; Zhuang, Y. B.; Wang, F.; Zhang, C.; Cheng, J. Water-mediated proton hopping mechanisms at the SnO2 (110)/H2O interface from ab initio deep potential molecular dynamics. Precis. Chem. 2024, 2, 644–654.

[159]

Licznerski, B. W.; Nitsch, K.; Teterycz, H.; Szecówka, P. M.; Wiśniewski, K. Humidity insensitive thick film methane sensor based on SnO2/Pt. Sens. Actuators B: Chem. 1999, 57, 192–196.

[160]

Egashira, M.; Kawasumi, S.; Kagawa, S.; Seiyama, T. Temperature programmed desorption study of water adsorbed on metal-oxides. I. Anatase and rutile. Bull. Chem. Soc. Jpn. 1978, 51, 3144–3149.

[161]

Egashira, M.; Nakashima, M.; Kawasumi, S.; Selyama, T. Temperature programmed desorption study of water adsorbed on metal oxides. 2. Tin oxide surfaces. J. Phys. Chem. 1981, 85, 4125–4130.

[162]

Wicker, S.; Guiltat, M.; Weimar, U.; Hémeryck, A.; Barsan, N. Ambient humidity influence on CO Detection with SnO2 gas sensing materials. A combined DRIFTS/DFT investigation. J. Phys. Chem. C 2017, 121, 25064–25073.

[163]

Postica, V.; Lupan, O.; Gapeeva, A.; Hansen, L.; Khaledialidusti, R.; Mishra, A. K.; Drewes, J.; Kersten, H.; Faupel, F.; Adelung, R. et al. Improved long‐term stability and reduced humidity effect in gas sensing: SiO2 ultra‐thin layered ZnO columnar films. Adv. Mater. Technol. 2021, 6, 2001137.

[164]

Kang, Y.; Ju, S. Graphene-filter-mounted tin-oxide-nanowire-transistor for chemical sensor. Semicond. Sci. Technol. 2018, 33, 125013.

[165]

Wu, J.; Wu, Z. X.; Ding, H. J.; Wei, Y. M.; Yang, X.; Li, Z. Y.; Yang, B. R.; Liu, C.; Qiu, L.; Wang, X. T. Multifunctional and high-sensitive sensor capable of detecting humidity, temperature, and flow stimuli using an integrated microheater. ACS Appl. Mater. Interfaces 2019, 11, 43383–43392.

[166]

Gugliandolo, G.; Naishadham, K.; Neri, G.; Fernicola, V. C.; Donato, N. A novel sensor-integrated aperture coupled microwave patch resonator for humidity detection. IEEE Trans. Instrum. Meas. 2021, 70, 9506611.

[167]

Mei, H. X.; Peng, J. Y.; Wang, T.; Zhou, T. T.; Zhao, H. R.; Zhang, T.; Yang, Z. Overcoming the limits of cross-sensitivity: Pattern recognition methods for chemiresistive gas sensor array. Nano-Micro Lett. 2024, 16, 269.

[168]

Verma, G.; Gokarna, A.; Kadiri, H.; Nomenyo, K.; Lerondel, G.; Gupta, A. Multiplexed gas sensor: Fabrication strategies, recent progress, and challenges. ACS Sens. 2023, 8, 3320–3337.

[169]

Kang, M. G.; Cho, I.; Park, J.; Jeong, J.; Lee, K.; Lee, B.; Del Orbe henriquez, D.; Yoon, K.; Park, I. High accuracy real-time multi-gas identification by a batch-uniform gas sensor array and deep learning algorithm. ACS Sens. 2022, 7, 430–440.

[170]

Korotcenkov, G.; Cho, B. K. Engineering approaches for the improvement of conductometric gas sensor parameters. Sens. Actuators B: Chem. 2013, 188, 709–728.

[171]

Murugesan, M.; Meher, S. R. TiO2-ZnO composite thin films fabricated by sol-gel spin coating for room temperature impedometric acetone sensing. Sens. Actuators A: Phys. 2024, 369, 115181.

[172]

Pradeep, N.; Gopal, T. S.; Venkatraman, U.; Alrebdi, T. A.; Pandiaraj, S.; Alodhayb, A.; Muthuramamoorthy, M.; Kim, S. Y.; Le, Q. V.; Khan, S. H. et al. Effect of substrate bending towards chemiresistive based hydrogen gas sensor using ZnO-decorated MgO nanocubes. Mater. Today Chem. 2022, 26, 101200.

[173]

Gao, W. X.; Chang, X. T.; Zhu, X. J.; Li, J. F.; Jiang, Y. C.; Wang, D. S.; Yang, C. X.; Sun, S. B. Al-doped ZnO/WO3 heterostructure films prepared by magnetron sputtering for isopropanol sensors. Rare Met. 2024, 43, 247–256.

[174]

R G, A.; Ahirwar, S.; Karthikeyan, L.; Subhash, J.; Singh, K.; Andhiwal, A.; Basu, P. K. Design, fabrication, and packaging of an optothermally activated nanocrystalline Pd-ZnO-based selective CO sensor on a screen-printed in-plane heater. ACS Appl. Electron. Mater. 2022, 4, 1651–1668.

[175]

Hu, Q. M.; Dong, Z.; Zhang, G. X.; Li, Y. X.; Xing, S. F.; Ma, Z. H.; Dong, B. Y.; Lu, B.; Sun, S. H.; Xu, J. Q. Ultra-thin ALD CoO x -ZnO heterogenous films as highly sensitive and environmentally friendly H2S sensor. Rare Met. 2023, 42, 3054–3063.

[176]

Asri, M. I. A.; Hasan, M. N.; Fuaad, M. R. A.; Yunos, Y. M.; Ali, M. S. M. MEMS gas sensors: A review. IEEE Sens. J. 2021, 21, 18381–18397.

[177]

Tan, Y. L.; Li, S. C.; Yang, X.; Jin, B.; Sun, J. Strategies of improving anti-humidity performance for metal oxide semiconductors gas-sensitive materials. Prog. Chem. 2022, 34, 1784–1795.

[178]

Naganaboina, V. R.; Bonam, S.; Anandkumar, M.; Suresh Deshpande, A.; Singh, S. G. Humidity-independent methane gas detection in Gd0.2La0.2Ce0.2Hf0.2Zr0.2O2-based sensor using polynomial regression analysis. IEEE Electron Device Lett. 2022, 43, 2153–2156.

Carbon Future
Cite this article:
Chen R, Lin S, Wang Z, et al. Metal oxide semiconductor-based methane sensing. Carbon Future, 2025, https://doi.org/10.26599/CF.2025.9200037
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return