PDF (14.8 MB)
Collect
Submit Manuscript
Research Article | Open Access | Online First

Cu-doped CeMnO2-supported Pt catalysts with high activity at industrial operating conditions for preferential CO oxidation in H2

Jianlin Cao1,#Tao Xing2,#Zongzhuang Sun1Sheng Wei1Jiaqi Wang1Lexin Mao1Tao Liu2Zhi Li2Yongxiao Tuo1Xin Zhou4 ()Hao Yan1Yibin Liu1Xiang Feng1 ()Chaohe Yang1De Chen3 ()
State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266000, China
Shandong Energy Group Co., Ltd., Jinan 250000, China
Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
Department of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China

#Jianlin Cao and Tao Xing contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Developing efficient, stable, and inexpensive catalysts for the preferential CO oxidation in H2 (CO-PROX) over a wide temperature range in the presence of CO2 and H2O is indispensable for the hydrogen purification process. Herein, CuO was introduced to the CeMnO2-supported Pt catalyst to modulate the oxygen activation capacity and provide the available number of active sites in CO-PROX. One part of the CuO species doped into CeO2 strongly interacts with Ce, thus enhancing the oxygen transfer capacity of the catalyst. The other part of CuO species located on the surface of the catalyst provides extra Cu+ sites available for low-temperature CO adsorption. This synergistic interaction with Pt sites further enhances CO and O2 activation, broadening the temperature window of high activity. The optimal Pt-10CuO/CeMnO2 catalyst exhibits complete CO conversion (CO/O2 ratio of 1:1) within the practical temperature range of 130–190 °C, even in the presence of CO2 and H2O, and remains stable at 150 °C for 76 h testing without any deactivation. This work will give a novel approach for the design of highly efficient inexpensive catalysts for industrial preferential oxidation of CO in H2, especially in the presence of CO2 and H2O.

Electronic Supplementary Material

Download File(s)
0038_ESM.pdf (1.5 MB)

References

[1]

Li, J.; Zhu, P. F.; Zuo, S. F.; Huang, Q. Q.; Zhou, R. X. Influence of Mn doping on the performance of CuO-CeO2 catalysts for selective oxidation of CO in hydrogen-rich streams. Appl. Catal. A: Gen. 2010, 381, 261–266.

[2]

Lade, H.; Kumar, V.; Arthanareeswaran, G.; Ismail, A. F. Sulfonated poly (arylene ether sulfone) nanocomposite electrolyte membrane for fuel cell applications: A review. Int. J. Hydrogen Energy 2017, 42, 1063–1074.

[3]

Wang, B. J.; Chu, G. W.; Li, Y. B.; Duan, X. Z.; Wang, J. X.; Luo, Y. Intensified micro-mixing effects on evolution of oxygen vacancies of CeO2-based catalysts for improved CO oxidation. Chem. Eng. Sci. 2021, 244, 116814.

[4]

Ren, P. C.; Tu, W. F.; Wang, C. C.; Cheng, S. F.; Liu, W. Q.; Zhang, Z. Z.; Tian, Y.; Han, Y. F. Mechanism and sites requirement for CO hydrogenation to CH3OH over Cu/CeO2 catalysts. Appl. Catal. B: Environ. 2022, 305, 121016.

[5]

Ayastuy, J. L.; Gamboa, N. K.; González-Marcos, M. P.; Gutiérrez-Ortiz, M. A. CuO/CeO2 washcoated ceramic monoliths for CO-PROX reaction. Chem. Eng. J. 2011, 171, 224–231.

[6]

Wang, H. L.; Bootharaju, M. S.; Kim, J. H.; Wang, Y.; Wang, K.; Zhao, M.; Zhang, R.; Xu, J.; Hyeon, T.; Wang, X. et al. Synergistic interactions of neighboring platinum and iron atoms enhance reverse water–gas shift reaction performance. J. Am. Chem. Soc. 2023, 145, 2264–2270.

[7]

Jia, Z. M.; Qin, X. T.; Chen, Y. L.; Cai, X. B.; Gao, Z. R.; Peng, M.; Huang, F.; Xiao, D. Q.; Wen, X. D.; Wang, N. et al. Fully-exposed Pt-Fe cluster for efficient preferential oxidation of CO towards hydrogen purification. Nat. Commun. 2022, 13, 6798.

[8]

Snytnikov, P. V.; Zyryanova, M. M.; Sobyanin, V. A. CO-cleanup of hydrogen-rich stream for LT PEM FC feeding: Catalysts and their performance in selective CO methanation. Top. Catal. 2016, 59, 1394–1412.

[9]

Gottesfeld, S.; Pafford, J. A new approach to the problem of carbon monoxide poisoning in fuel cells operating at low temperatures. J. Electrochem. Soc. 1988, 135, 2651–2652.

[10]

Takenaka, S.; Shimizu, T.; Otsuka, K. Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts. Int. J. Hydrogen Energy 2004, 29, 1065–1073.

[11]

Qiao, B. T.; Liang, J. X.; Wang, A. Q.; Liu, J. Y.; Zhang, T. Single atom gold catalysts for low-temperature CO oxidation. Chin. J. Catal. 2016, 37, 1580–1586.

[12]

Qiao, B. T.; Liang, J. X.; Wang, A. Q.; Xu, C. Q.; Li, J.; Zhang, T.; Liu, J. J. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res. 2015, 8, 2913–2924.

[13]

Komatsu, T.; Takasaki, M.; Ozawa, K.; Furukawa, S.; Muramatsu, A. PtCu intermetallic compound supported on alumina active for preferential oxidation of CO in hydrogen. J. Phys. Chem. C. 2013, 117, 10483–10491.

[14]

Liu, K.; Wang, A. Q.; Zhang, T. Recent advances in preferential oxidation of CO reaction over platinum group metal catalysts. ACS Catal. 2012, 2, 1165–1178.

[15]

Lu, J. C.; Wang, J.; Zou, Q.; He, D. D.; Zhang, L. M.; Xu, Z. Z.; He, S. F.; Luo, Y. M. Unravelling the nature of the active species as well as the doping effect over Cu/Ce-based catalyst for carbon monoxide preferential oxidation. ACS Catal. 2019, 9, 2177–2195.

[16]

Fu, Q.; Li, W. X.; Yao, Y. X.; Liu, H. Y.; Su, H. Y.; Ma, D.; Gu, X. K.; Chen, L. M.; Wang, Z.; Zhang, H. et al. Interface-confined ferrous centers for catalytic oxidation. Science 2010, 328, 1141–1144.

[17]

Dreyer, J. A. H.; Grossmann, H. K.; Chen, J. F.; Grieb, T.; Gong, B. B.; Sit, P. H. L.; Mädler, L.; Teoh, W. Y. Preferential oxidation of carbon monoxide over Pt-FeO x /CeO2 synthesized by two-nozzle flame spray pyrolysis. J. Catal. 2015, 329, 248–261.

[18]

Davó-Quiñonero, A.; Bailón-García, E.; López-Rodríguez, S.; Juan-Juan, J.; Lozano-Castelló, D.; García-Melchor, M.; Herrera, F. C.; Pellegrin, E.; Escudero, C.; Bueno-López, A. Insights into the oxygen vacancy filling mechanism in CuO/CeO2 catalysts: A key step toward high selectivity in preferential CO oxidation. ACS Catal. 2020, 10, 6532–6545.

[19]

Wang, B. B.; Zhang, H.; Xu, W.; Li, X. B.; Wang, W.; Zhang, L. J.; Li, Y. M.; Peng, Z.; Yang, F.; Liu, Z. Nature of active sites on Cu-CeO2 catalysts activated by high-temperature thermal aging. ACS Catal. 2020, 10, 12385–12392.

[20]

Jin, H.; You, R.; Zhou, S.; Ma, K.; Meng, M.; Zheng, L. R.; Zhang, J.; Hu, T. D. In-situ DRIFTS and XANES identification of copper species in the ternary composite oxide catalysts CuMnCeO during CO preferential oxidation. Int. J. Hydrogen Energy 2015, 40, 3919–3931.

[21]

Wang, C. L.; Gu, X. K.; Yan, H.; Lin, Y.; Li, J. J.; Liu, D. D.; Li, W. X.; Lu, J. L. Water-mediated Mars–van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst. ACS Catal. 2017, 7, 887–891.

[22]

Wang, Y. R.; Ma, J. M.; Wang, X. Y.; Zhang, Z. S.; Zhao, J. H.; Yan, J.; Du, Y. P.; Zhang, H. B.; Ma, D. Complete CO oxidation by O2 and H2O over Pt-CeO2− δ /MgO following Langmuir–Hinshelwood and Mars–van Krevelen mechanisms, respectively. ACS Catal. 2021, 11, 11820–11830.

[23]

Reina, T. R.; Papadopoulou, E.; Palma, S.; Ivanova, S.; Centeno, M. A.; Ioannides, T.; Odriozola, J. A. Could an efficient WGS catalyst be useful in the CO-PrO x reaction. Appl. Catal. B: Environ. 2014, 150–151, 554–563.

[24]

Davó-Quiñonero, A.; Navlani-García, M.; Lozano-Castelló, D.; Bueno-López, A.; Anderson, J. A. Role of hydroxyl groups in the preferential oxidation of CO over copper oxide-cerium oxide catalysts. ACS Catal. 2016, 6, 1723–1731.

[25]

Hočevar, S.; Krašovec, U. O.; Orel, B.; Aricó, A. S.; Kim, H. CWO of phenol on two differently prepared CuO-CeO2 catalysts. Appl. Catal. B: Environ. 2000, 28, 113–125.

[26]

Gamarra, D.; Belver, C.; Fernández-García, M.; Martínez-Arias, A. Selective CO oxidation in excess H2 over copper-ceria catalysts: Identification of active entities/species. J. Am. Chem. Soc. 2007, 129, 12064–12065.

[27]

Teschner, D.; Wootsch, A.; Pozdnyakova-Tellinger, O.; Kröhnert, J.; Vass, E. M.; Hävecker, M.; Zafeiratos, S.; Schnörch, P.; Jentoft, F. C.; Knop-Gericke, A. Partial pressure dependent in situ spectroscopic study on the preferential CO oxidation in hydrogen (PROX) over Pt/ceria catalysts. J. Catal. 2017, 249, 318–327.

[28]

Cao, J. L.; Zhang, X. Q.; Ou, X. X.; Liu, T.; Xing, T.; Li, Z.; Zhou, X.; Yan, H.; Liu, Y. B.; Feng, X. et al. Reactant adsorption modulation by Fe and K in Pt catalyst for highly effective CO preferential oxidation in practical conditions. Chem. Eng. J. 2022, 444, 136661.

[29]

Huang, Y. Q.; Wang, A. Q.; Li, L.; Wang, X. D.; Su, D. S.; Zhang, T. “Ir-in-ceria”: A highly selective catalyst for preferential CO oxidation. J. Catal. 2008, 255, 144–152.

[30]

Yan, H.; Zhang, N. Q.; Wang, D. S. Highly efficient CeO2-supported noble-metal catalysts: From single atoms to nanoclusters. Chem Catalysis 2022.

[31]

Naren, T.; Jing, G. J.; Xue, L.; Wang, Q.; Zhao, Y. S.; Li, C. X.; Lu, S. H.; Wu, J. F.; Zeng, S. H. Development of platinum assisted ternary catalyst with high activity and selectivity at working temperature of proton-exchange membrane fuel cells for preferential oxidation of CO. Int. J. Hydrogen Energy 2020, 45, 21848–21857.

[32]

Wang, Q.; Gong, J. H.; Zhang, H.; Fan, Q. Y.; Xue, L.; Wu, J. F.; Li, J. X.; Wang, Y.; Liu, Z.; Gao, R. et al. Co-promotion of two-type active sites: PtCu single-atom alloy and copper-ceria interface for preferential oxidation of CO. Appl. Catal. B: Environ. 2022, 306, 121117.

[33]

Maciel, C. G.; Silva, T. D. F.; Profeti, L. P. R.; Assaf, E. M.; Assaf, J. M. Study of CuO/CeO2 catalyst with for preferential CO oxidation reaction in hydrogen-rich feed (PROX-CO). Appl. Catal. A: Gen. 2012, 431–432, 25–32.

[34]

Meng, M.; Tu, Y. B.; Ding, T.; Sun, Z. S.; Zhang, L. J. Effect of synthesis pH and Au loading on the CO preferential oxidation performance of Au/MnO x -CeO2 catalysts prepared with ultrasonic assistance. Int. J. Hydrogen Energy 2011, 36, 9139–9150.

[35]

He, C.; Yu, Y. K.; Shen, Q.; Chen, J. S.; Qiao, N. L. Catalytic behavior and synergistic effect of nanostructured mesoporous CuO-MnO x -CeO2 catalysts for chlorobenzene destruction. Appl. Surf. Sci. 2014, 297, 59–69.

[36]

Kim, H. J.; Jang, M. G.; Shin, D.; Han, J. W. Design of ceria catalysts for low-temperature CO oxidation. ChemCatChem 2020, 12, 11–26.

[37]

Miranda Cruz, A. R.; Assaf, E. M.; Gomes, J. F.; Assaf, J. M. New insights about the effect of the synthesis method on the CuO CeO2 redox properties and catalytic performance towards CO-PROX reaction for fuel cell applications. J. Environ. Manage. 2019, 242, 272–278.

[38]

Tiscornia, I. S.; Lacoste, A. M.; Gómez, L. E.; Boix, A. V. CuO-CeO2/SiO2 coating on ceramic monolith: Effect of the nature of the catalyst support on CO preferential oxidation in a H2-rich stream. Int. J. Hydrogen Energy 2022, 45, 6636–6650.

[39]

Zhang, H.; Zhao, X. Z.; Wang, S.; Zeng, S. H.; Su, H. Q. Change of Cu+ species and synergistic effect of copper and cerium during reduction–oxidation treatment for preferential CO oxidation. Appl. Surf. Sci. 2018, 441, 754–763.

[40]

Gao, Y. X.; Xie, K. M.; Wang, W. D.; Mi, S. Y.; Liu, N.; Pan, G. Q.; Huang, W. X. Structural features and catalytic performance in CO preferential oxidation of CuO-CeO2 supported on multi-walled carbon nanotubes. Catal. Sci. Technol. 2015, 5, 1568–1579.

[41]

Zou, Q.; Zhao, Y. H.; Jin, X.; Fang, J.; Li, D. Y.; Li, K. Z.; Lu, J. C.; Luo, Y. M. Ceria-nano supported copper oxide catalysts for CO preferential oxidation: Importance of oxygen species and metal–support interaction. Appl. Surf. Sci. 2019, 494, 1166–1176.

[42]

Guo, X. L.; Qiu, Z. H.; Mao, J. X.; Zhou, R. X. Shape-controlled CuxCe1− x O2 nanorods catalyst and the active components functioned in selective oxidation of CO in hydrogen-rich stream. J. Power Sources 2020, 451, 227757.

[43]

Ayastuy, J. L.; Fernández-Puertas, E.; González-Marcos, M. P.; Gutiérrez-Ortiz, M. A. Transition metal promoters in CuO/CeO2 catalysts for CO removal from hydrogen streams. Int. J. Hydrogen Energy 2012, 37, 7385–7397.

[44]

Fan, J.; Wu, X. D.; Wu, X. D.; Liang, Q.; Ran, R.; Weng, D. Thermal ageing of Pt on low-surface-area CeO2-ZrO2-La2O3 mixed oxides: Effect on the OSC performance. Appl. Catal. B: Environ. 2008, 81, 38–48.

[45]

Xie, Y.; Wu, J. F.; Jing, G. J.; Zhang, H.; Zeng, S. H.; Tian, X. P.; Zou, X.; Wen, J.; Su, H. Q.; Zhong, C. J. et al. Structural origin of high catalytic activity for preferential CO oxidation over CuO/CeO2 nanocatalysts with different shapes. Appl. Catal. B: Environ. 2018, 239, 665–676.

[46]

Guo, X. L.; Li, J.; Zhou, R. X. Catalytic performance of manganese doped CuO-CeO2 catalysts for selective oxidation of CO in hydrogen-rich gas. Fuel 2016, 163, 56–64.

[47]

Qi, L.; Yu, Q.; Dai, Y.; Tang, C. J.; Liu, L. J.; Zhang, H. L.; Gao, F.; Dong, L.; Chen, Y. Influence of cerium precursors on the structure and reducibility of mesoporous CuO-CeO2 catalysts for CO oxidation. Appl. Catal. B: Environ. 2012, 119–120, 308–320.

[48]

Trovarelli, A.; Llorca, J. Ceria catalysts at nanoscale: How do crystal shapes shape catalysis. ACS Catal. 2017, 7, 4716–4735.

[49]

Wang, C. X.; Feng, F.; Du, J. C.; Zheng, T. T.; Pan, Z. F.; Zhao, Y. K. Activation of surface lattice oxygen in ceria supported Pt/Al2O3 catalyst for low-temperature propane oxidation. ChemCatChem 2019, 11, 2054–2057.

[50]

Zhang, S. R.; Shan, J. J.; Zhu, Y.; Frenkel, A. I.; Patlolla, A.; Huang, W. X.; Yoon, S. J.; Wang, L.; Yoshida, H.; Takeda, S. et al. WGS catalysis and in situ studies of CoO1− x , PtCo n /Co3O4, and Pt m Co m /CoO1− x nanorod catalysts. J. Am. Chem. Soc. 2013, 135, 8283–8293.

[51]

Jeong, H.; Shin, D.; Kim, B. S.; Bae, J.; Shin, S.; Choe, C.; Han, J. W.; Lee, H. Controlling the oxidation state of Pt single atoms for maximizing catalytic activity. Angew. Chem., Int. Ed. 2020, 59, 20691–20696.

[52]

Kundakovic, L.; Flytzani-Stephanopoulos, M. Reduction characteristics of copper oxide in cerium and zirconium oxide systems. Appl. Catal. A: Gen. 1998, 171, 13–29.

[53]

Qiu, H. J.; Shen, X.; Wang, J. Q.; Hirata, A.; Fujita, T.; Wang, Y.; Chen, M. W. Aligned nanoporous Pt-Cu bimetallic microwires with high catalytic activity toward methanol electrooxidation. ACS Catal. 2015, 5, 3779–3785.

[54]

Liu, X. H.; Wang, X. H.; Zhen, S. Y.; Sun, G. D.; Pei, C. L.; Zhao, J. J.; Gong, J. J. Support stabilized PtCu single-atom alloys for propane dehydrogenation. Chem. Sci. 2022, 13, 9537–9543.

[55]

Wang, W. W.; Du, P. P.; Zou, S. H.; He, H. Y.; Wang, R. X.; Jin, Z.; Shi, S.; Huang, Y. Y.; Si, R.; Song, Q. S. Highly dispersed copper oxide clusters as active species in copper-ceria catalyst for preferential oxidation of carbon monoxide. ACS Catal. 2015, 5, 2088–2099.

[56]

Kandoi, S.; Gokhale, A. A.; Grabow, L. C.; Dumesic, J. A.; Mavrikakis, M. Why Au and Cu are more selective than Pt for preferential oxidation of CO at low temperature. Catal. Lett. 2004, 93, 93–100.

[57]

Zhuang, L. Z.; Ge, L.; Yang, Y. S.; Li, M. R.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.

[58]

Wang, S.; Guan, B. Y.; Lou, X. W. Rationally designed hierarchical N-doped carbon@NiCo2O4 double-shelled nanoboxes for enhanced visible light CO2 reduction. Energy Environ. Sci. 2018, 11, 306–310.

[59]

Liu, Y.; Xue, W. C.; Liu, X. Q.; Wei, F.; Lin, X. H.; Lu, X. F.; Lin, W.; Hou, Y. D.; Zhang, G. G.; Wang, S. B. Ultrafine Pt nanoparticles on defective tungsten oxide for photocatalytic ethylene synthesis. Small 2024, 20, 2402004.

[60]

Wei, F.; Xue, W. C.; Yu, Z. Y.; Lu, X. F.; Wang, S. B.; Lin, W.; Wang, X. C. Dynamic cooperations between lattice oxygen and oxygen vacancies for photocatalytic ethane dehydrogenation by a self-restoring LaVO4 catalyst. Chin. Chem. Lett. 2024, 35, 171–176.

[61]

Polster, C. S.; Nair, H.; Baertsch, C. D. Study of active sites and mechanism responsible for highly selective CO oxidation in H2 rich atmospheres on a mixed Cu and Ce oxide catalyst. J. Catal. 2009, 266, 308–319.

[62]

Li, J.; Zhu, P. F.; Zhou, R. X. Effect of the preparation method on the performance of CuO-MnO x -CeO2 catalysts for selective oxidation of CO in H2-rich streams. J. Power Sources 2011, 196, 9590–9598.

[63]

Yao, S. Y.; Mudiyanselage, K.; Xu, W. Q.; Johnston-Peck, A. C.; Hanson, J. C.; Wu, T. P.; Stacchiola, D.; Rodriguez, J. A.; Zhao, H. Y.; Beyer, K. A. et al. Unraveling the dynamic nature of a CuO/CeO2 catalyst for CO oxidation in operando: A combined study of XANES (fluorescence) and DRIFTS. ACS Catal. 2014, 4, 1650–1661.

[64]

Kaftan, A.; Kusche, M.; Laurin, M.; Wasserscheid, P.; Libuda, J. KOH-promoted Pt/Al2O3 catalysts for water gas shift and methanol steam reforming: An operando DRIFTS-MS study. Appl. Catal. B: Environ. 2017, 201, 169–181.

Carbon Future
Cite this article:
Cao J, Xing T, Sun Z, et al. Cu-doped CeMnO2-supported Pt catalysts with high activity at industrial operating conditions for preferential CO oxidation in H2. Carbon Future, 2025, https://doi.org/10.26599/CF.2025.9200038
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return