PDF (7.7 MB)
Collect
Submit Manuscript
Show Outline
Figures (5)

Research Article | Open Access | Online First

Efficient catalytic conversion of polyethylene terephthalate to dimethyl terephthalate over mesoporous Beta zeolite supported zinc oxide

Xiaoxue Mu1,#Dongquan Lin1,#Jian Zhang1 ()Xiaoyuan Qin1Jianbin Huang1Feng-Shou Xiao1,2 ()
Beijing Advanced Innovation Center for Soft Matter, Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

#Xiaoxue Mu and Dongquan Lin contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Methanolysis of polyethylene terephthalate to dimethyl terephthalate is a sustainable route for recycling of polyethylene terephthalate (PET) plastic. Herein, we demonstrate that mesoporous Beta zeolite supported zinc oxide (Zn-Beta-meso) is efficient for methanolysis of polyethylene terephthalate to dimethyl terephthalate, exhibiting ~ 99.9% dimethyl terephthalate yield at 180 °C after reaction for 30 min. Model reactions confirmed that the key step in PET methanolysis was the methanolysis of 2-hydroxyethyl methyl terephthalate to form dimethyl terephthalate, where the highly dispersed zinc species are the active sites for this step. In addition, the Zn-Beta-meso catalyst was active for the methanolysis of various PET substrates. When bottle with pigment, terylene, transparent adhesive tape, and soundproof cotton were applied as the substrates, full PET conversion and higher than 99.0% dimethyl terephthalate yield were obtained.

Electronic Supplementary Material

Download File(s)
0039_ESM.pdf (1.2 MB)

References

[1]

Zhang, F.; Zeng, M. H.; Yappert, R. D.; Sun, J. K.; Lee, Y. H.; LaPointe, A. M.; Peters, B.; Abu-Omar, M. M.; Scott, S. L. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 2020, 370, 437–441.

[2]

Jing, Y. X.; Wang, Y. Q.; Furukawa, S.; Xia, J.; Sun, C. Y.; Hülsey, M. J.; Wang, H. F.; Guo, Y.; Liu, X. H.; Yan, N. Towards the circular economy: Converting aromatic plastic waste back to arenes over a Ru/Nb2O5 catalyst. Angew. Chem., Int. Ed. 2021, 60, 5527–5535.

[3]

Goh, X. Y.; Guo, K. T.; Nguyen, L. T.; Ong, R. H.; Duong, H. M. Fabrication and properties of polyethylene terephthalate (PET) aerogel composites from plastic bottle waste. Mater. Today Commun. 2023, 37, 107625.

[4]

Liu, S. B.; Kots, P. A.; Vance, B. C.; Danielson, A.; Vlachos, D. G. Plastic waste to fuels by hydrocracking at mild conditions. Sci. Adv. 2021, 7, eabf8283.

[5]

Tennakoon, A.; Wu, X.; Paterson, A. L.; Patnaik, S.; Pei, Y. C.; LaPointe, A. M.; Ammal, S. C.; Hackler, R. A.; Heyden, A.; Slowing, I. I. et al. Catalytic upcycling of high-density polyethylene via a processive mechanism. Nat. Catal. 2020, 3, 893–901.

[6]

Kratish, Y.; Marks, T. J. Efficient polyester hydrogenolytic deconstruction via tandem catalysis. Angew. Chem., Int. Ed. 2022, 61, e202112576.

[7]

Rahimi, A.; García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017, 1, 0046.

[8]

Shi, R.; Liu, K. S.; Liu, F. L.; Yang, X.; Hou, C. C.; Chen, Y. Electrocatalytic reforming of waste plastics into high value-added chemicals and hydrogen fuel. Chem. Commun. 2021, 57, 12595–12598.

[9]

Imran, M.; Kim, B. K.; Han, M.; Cho, B. G.; Kim, D. H. Sub- and supercritical glycolysis of polyethylene terephthalate (PET) into the monomer bis(2-hydroxyethyl) terephthalate (BHET). Polym. Degrad. Stab. 2010, 95, 1686–1693.

[10]

Liang, X.; Wang, M.; Ma, D. One-pot conversion of polyester and carbonate into formate without external H2. J. Am. Chem. Soc. 2024, 146, 2711–2717.

[11]

Xue, R.; Qiu, C. H.; Zhou, X. L.; Cheng, Y.; Zhang, Z.; Zhang, Y.; Schröder, U.; Bornscheuer, U. T.; Dong, W. L.; Wei, R. et al. Enzymatic upcycling of PET waste to calcium terephthalate for battery anodes. Angew. Chem., Int. Ed. 2024, 63, e202313633.

[12]

Ma, F. H.; Li, Z. Q.; Hu, R. M.; Wang, Z. Q.; Wang, J. P.; Li, J. K.; Nie, Y.; Zheng, Z. K.; Jiang, X. C. Electrocatalytic waste-treating-waste strategy for concurrently upgrading of polyethylene terephthalate plastic and CO2 into value-added formic acid. ACS Catal. 2023, 13, 14163–14172.

[13]

Cao, R. C.; Zhang, M. Q.; Jiao, Y. C.; Li, Y. C.; Sun, B.; Xiao, D. Q.; Wang, M.; Ma, D. Co-upcycling of polyvinyl chloride and polyesters. Nat. Sustain. 2023, 6, 1685–1692.

[14]

Hu, Y.; Zhang, S. Y.; Xu, J. F.; Liu, Y.; Yu, A. A.; Qian, J.; Xie, Y. J. Highly efficient depolymerization of waste polyesters enabled by transesterification/hydrogenation relay under mild conditions. Angew. Chem. Int. Ed. 2023, 62, e202312564.

[15]

Zhang, S. B.; Hu, Q. K.; Zhang, Y. X.; Guo, H. Y.; Wu, Y. F.; Sun, M. Z.; Zhu, X. S.; Zhang, J. G.; Gong, S. Y.; Liu, P. et al. Depolymerization of polyesters by a binuclear catalyst for plastic recycling. Nat. Sustain. 2023, 6, 965–973.

[16]

Pham, D. D.; Cao, A. N. T.; Kumar, P. S.; Nguyen, T. B.; Nguyen, H. T.; Phuong, P. T. T.; Nguyen, D. L. T.; Nabgan, W.; Trinh, T. H.; Vo, D. V. N. et al. Insight the influence of the catalyst basicity on glycolysis behavior of Polyethylene terephthalate (PET). Chem. Eng. Sci. 2023, 282, 119356.

[17]

Allen, S.; Allen, D.; Phoenix, V. R.; Le Roux, G.; Jiménez, P. D.; Simonneau, A.; Binet, S.; Galop, D. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 2019, 12, 339–344.

[18]

Thompson, R. C.; Olsen, Y.; Mitchell, R. P.; Davis, A.; Rowland, S. J.; John, A. W. G.; Mcgonigle, D.; Russell, A. E. Lost at sea: Where is all the plastic. Science 2004, 304, 838.

[19]

Bai, S. L.; Zhao, Y. B.; Sun, J. H.; Tian, Y.; Luo, R. X.; Li, D. Q.; Chen, A. F. Ultrasensitive room temperature NH3 sensor based on a graphene-polyaniline hybrid loaded on PET thin film. Chem. Commun. 2015, 51, 7524–7527.

[20]

Barnard, E.; Arias, J. J. R.; Thielemans, W. Chemolytic depolymerisation of PET: A review. Green Chem. 2021, 23, 3765–3789.

[21]

Benyathiar, P.; Kumar, P.; Carpenter, G.; Brace, J.; Mishra, D. K. Polyethylene terephthalate (PET) bottle-to-bottle recycling for the beverage industry: A review. Polymers 2022, 14, 2366.

[22]

Ellis, L. D.; Rorrer, N. A.; Sullivan, K. P.; Otto, M.; McGeehan, J. E.; Román-Leshkov, Y.; Wierckx, N.; Beckham, G. T. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 2021, 4, 539–556.

[23]

Weckhuysen, B. M. Creating value from plastic waste. Science 2020, 370, 400–401.

[24]

Akhbarizadeh, R.; Dobaradaran, S.; Torkmahalleh, M. A.; Saeedi, R.; Aibaghi, R.; Ghasemi, F. F. Suspended fine particulate matter (PM2.5), microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: Their possible relationships and health implications. Environ. Res. 2021, 192, 110339.

[25]

Kim, S. W.; Waldman, W. R.; Kim, T. Y.; Rillig, M. C. Effects of different microplastics on nematodes in the soil environment: Tracking the extractable additives using an ecotoxicological approach. Environ. Sci. Technol. 2020, 54, 13868–13878.

[26]

Imran, M.; Kim, D. H.; Al-Masry, W. A.; Mahmood, A.; Hassan, A.; Haider, S.; Ramay, S. M. Manganese-, cobalt-, and zinc-based mixed-oxide spinels as novel catalysts for the chemical recycling of poly(ethylene terephthalate) via glycolysis. Polym. Degrad. Stab. 2013, 98, 904–915.

[27]

Lalhmangaihzuala, S.; Laldinpuii, Z. T.; Khiangte, V.; Lallawmzuali, G.; Thanhmingliana; Vanlaldinpuia, K. Orange peel ash coated Fe3O4 nanoparticles as a magnetically retrievable catalyst for glycolysis and methanolysis of PET waste. Adv. Powder Technol. 2023, 34, 104076.

[28]

Yang, Y.; Lu, Y. J.; Xiang, H. W.; Xu, Y. Y.; Li, Y. W. Study on methanolytic depolymerization of PET with supercritical methanol for chemical recycling. Polym. Degrad. Stab. 2002, 75, 185–191.

[29]

Bartolome, L.; Imran, M.; Lee, K. G.; Sangalang, A.; Ahn, J. K.; Kim, D. H. Superparamagnetic γ-Fe2O3 nanoparticles as an easily recoverable catalyst for the chemical recycling of PET. Green Chem. 2014, 16, 279–286.

[30]

Du, J. T.; Sun, Q.; Zeng, X. F.; Wang, D.; Wang, J. X.; Chen, J. F. ZnO nanodispersion as pseudohomogeneous catalyst for alcoholysis of polyethylene terephthalate. Chem. Eng. Sci. 2020, 220, 115642.

[31]

Kurokawa, H.; Ohshima, M. A.; Sugiyama, K.; Miura, H. Methanolysis of polyethylene terephthalate (PET) in the presence of aluminium tiisopropoxide catalyst to form dimethyl terephthalate and ethylene glycol. Polym. Degrad. Stab. 2003, 79, 529–533.

[32]

Tang, S. X.; Li, F.; Liu, J. D.; Guo, B.; Tian, Z. N.; Lv, J. H. MgO/NaY as modified mesoporous catalyst for methanolysis of polyethylene terephthalate wastes. J. Environ. Chem. Eng. 2022, 10, 107927.

[33]

Kang, M. J.; Yu, H. J.; Jegal, J.; Kim, H. S.; Cha, H. G. Depolymerization of PET into terephthalic acid in neutral media catalyzed by the ZSM-5 acidic catalyst. Chem. Eng. J. 2020, 398, 125655.

[34]

Cao, J. J.; Lin, Y. H.; Jiang, W.; Wang, W.; Li, X. D.; Zhou, T. P.; Sun, P.; Pan, B. C.; Li, A. M.; Zhang, Q. X. Mechanism of the significant acceleration of polyethylene terephthalate glycolysis by defective ultrathin ZnO nanosheets with heteroatom doping. ACS Sustain. Chem. Eng. 2022, 10, 5476–5488.

[35]

Zhu, J.; Zhu, Y. H.; Zhu, L. K.; Rigutto, M.; Van Der Made, A.; Yang, C. G.; Pan, S. X.; Wang, L.; Zhu, L. F.; Jin, Y. Y. et al. Highly mesoporous single-crystalline zeolite Beta synthesized using a nonsurfactant cationic polymer as a dual-function template. J. Am. Chem. Soc. 2014, 136, 2503–2510.

[36]

Beutel, T. W.; Willard, A. M.; Lee, C.; Martinez, M. S.; Dugan, R. Probing external Brønsted acid sites in large pore zeolites with infrared spectroscopy of adsorbed 2,4,6-tri-tert-butylpyridine. J. Phys. Chem. C 2021, 125, 8518–8532.

[37]

Mahalakshmi, M.; Priya, S. V.; Arabindoo, B.; Palanichamy, M.; Murugesan, V. Photocatalytic degradation of aqueous propoxur solution using TiO2 and Hβ zeolite-supported TiO2. J. Hazard. Mater. 2009, 161, 336–343.

[38]

Zhao, D.; Guo, K.; Han, S. L.; Doronkin, D. E.; Lund, H.; Li, J. S.; Grunwaldt, J. D.; Zhao, Z.; Xu, C. M.; Jiang, G. Y. et al. Controlling reaction-induced loss of active sites in ZnO x /silicalite-1 for durable nonoxidative propane dehydrogenation. ACS Catal. 2022, 12, 4608–4617.

[39]

Song, S. J.; Yang, K.; Zhang, P.; Wu, Z. J.; Li, J.; Su, H.; Dai, S.; Xu, C. M.; Li, Z. X.; Liu, J. et al. Silicalite-1 stabilizes Zn-hydride species for efficient propane dehydrogenation. ACS Catal. 2022, 12, 5997–6006.

[40]

Liao, Y. C.; Liao, F. L.; Chang, W. K.; Wang, S. L. A zeolitic organo-metallophosphate hybrid material with bimodal porosity. J. Am. Chem. Soc. 2004, 126, 1320–1321.

[41]

Arslan, M. T.; Qureshi, B. A.; Gilani, S. Z. A.; Cai, D. L.; Ma, Y. H.; Usman, M.; Chen, X.; Wang, Y.; Wei, F. Single-step conversion of H2-deficient syngas into high yield of tetramethylbenzene. ACS Catal. 2019, 9, 2203–2212.

[42]

Al-Sabagh, A. M.; Yehia, F. Z.; Eissa, A. M. F.; Moustafa, M. E.; Eshaq, G.; Rabie, A. M.; ElMetwally, A. E. Cu- and Zn-acetate-containing ionic liquids as catalysts for the glycolysis of poly (ethylene terephthalate). Polym. Degrad. Stab. 2014, 110, 364–377.

[43]

Genta, M.; Iwaya, T.; Sasaki, M.; Goto, M.; Hirose, T. Depolymerization mechanism of poly(ethylene terephthalate) in supercritical methanol. Ind. Eng. Chem. Res. 2005, 44, 3894–3900.

[44]

Liu, Q. L.; Li, R. S.; Fang, T. Investigating and modeling PET methanolysis under supercritical conditions by response surface methodology approach. Chem. Eng. J. 2015, 270, 535–541.

[45]

Ma, M. Y.; Wang, S.; Liu, Y.; Yu, H. L.; Yu, S. T.; Ji, C. C.; Li, H. Y.; Nie, G. K.; Liu, S. W. Insights into the depolymerization of polyethylene terephthalate in methanol. J. Appl. Polym. Sci. 2022, 139, e52814.

Carbon Future
Cite this article:
Mu X, Lin D, Zhang J, et al. Efficient catalytic conversion of polyethylene terephthalate to dimethyl terephthalate over mesoporous Beta zeolite supported zinc oxide. Carbon Future, 2025, https://doi.org/10.26599/CF.2025.9200039
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return