AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access | Online First

The application of organoids in toxicity test of environmental pollutants

Yuting Fang1,2Huraira Akhtar1,2Ji Wang1,2( )
Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
Show Author Information

Highlights

• Organoids could be excellent alternative models for health risk assessment of environmental pollutants

• The development history of organoid as models for health risk assessment of environmental pollutants were summarized

• The current status of organoids as models for toxicity testing (exposure method, dose, exposure duration, toxic effects, etc.) of environmental pollutants was presented

• The unique advantages and challenges of organoids as toxicity test models were concluded

Graphical Abstract

In this review, we have discussed the reasons why organoids may be excellent alternative models for health risk assessment of environmental pollutants. Specifically, we summarized the development history of organoid as models for health risk assessment of environmental pollutants. Most importantly, we presented the current status of organoids as models for toxicity testing of environmental pollutants, mainly in the areas of neurotoxicity, cardiotoxicity, pulmonary toxicity, hepatotoxicity, nephrotoxicity and enterotoxicity. Finally, we also discussed the unique advantages and challenges of organoids as toxicity test models. It is hoped that this will provide a unique insight into the application of organoids in the field of toxicology.

Abstract

Environmental pollutants are mainly produced by human production and living, and pose a serious threat to human health. Health risk assessments of environmental pollutants are needed in order to contribute to the development of reasonable control measures. In comparison to two-dimensional (2D) cell culture and experimental animals, organoids are excellent alternative models for health risk assessment of environmental pollutants. In this review, we described the development and application of organoids in models for the toxicity testing of environmental pollutants. Finally, there was a discussion of the unique advantages and challenges of organoids as toxicity test models. It is hoped that this will provide a unique insight into the application of organoids in the field of toxicology.

References

[1]

Ahmad, H. A., Ahmad, S., Cui, Q. J., Wang, Z. B., Wei, H. W., Chen, X., Ni, S. Q., Ismail, S., Awad, H. M., Tawfik, A. The environmental distribution and removal of emerging pollutants, highlighting the importance of using microbes as a potential degrader: A review. Science of the Total Environment, 2022, 809: 151926. https://doi.org/10.1016/j.scitotenv.2021.151926

[2]

Yang, L. L., Cai, X. M., Li, R. B. Ferroptosis induced by pollutants: An emerging mechanism in environmental toxicology. Environmental Science & Technology, 2024, 58(5): 2166–2184. https://doi.org/10.1021/acs.est.3c06127

[3]

Zhao, B. S., Rehati, P., Yang, Z., Cai, Z. W., Guo, C. X., Li, Y. B. The potential toxicity of microplastics on human health. Science of the Total Environment, 2024, 912: 168946. https://doi.org/10.1016/j.scitotenv.2023.168946

[4]

Zhang, Y. J., Zhang, X. J., Yuan, N., Zhang, Y. Z., Wang, Y. M., Tang, F. Y., Ng, M. P., Wong, I. C. K., Ip, P., Kam, K. W. et al. Analysis of secondhand smoke exposure and myopia among children aged 6 to 8 years in Hong Kong. JAMA Network Open, 2023, 6(5): e2313006. https://doi.org/10.1001/jamanetworkopen.2023.13006

[5]

Schneider, M., Stracke, F., Hansen, S., Schaefer, U. F. Nanoparticles and their interactions with the dermal barrier. Dermato-Endocrinology, 2009, 1(4): 197–206. https://doi.org/10.4161/derm.1.4.9501

[6]

Collins, F. S., Gray, G. M., Bucher, J. R. Transforming environmental health protection. Science, 2008, 319(5865): 906–907. https://doi.org/10.1126/science.1154619

[7]
Krewski, D., Acosta, D. Jr, Andersen, M., Anderson, H., Bailar, J. C. III, Boekelheide, K., Brent, R., Charnley, G., Cheung, V. G., Green, S. Jr et al. Toxicity testing in the 21st century: A vision and a strategy. Journal of Toxicology and Environmental Health, Part B, 2010 , 13(2–4): 51–138. https://doi.org/10.1080/10937404.2010.483176
[8]

Fritsche, E., Haarmann-Stemmann, T., Kapr, J., Galanjuk, S., Hartmann, J., Mertens, P. R., Kämpfer, A. A. M., Schins, R. P. F., Tigges, J., Koch, K. Stem cells for next level toxicity testing in the 21st century. Small, 2021, 17(15): e2006252. https://doi.org/10.1002/smll.202006252

[9]

Fatehullah, A., Tan, S. H., Barker, N. Organoids as an in vitro model of human development and disease. Nature Cell Biology, 2016, 18(3): 246–254. https://doi.org/10.1038/ncb3312

[10]

Fujii, M., Sato, T. Somatic cell-derived organoids as prototypes of human epithelial tissues and diseases. Nature Materials, 2021, 20(2): 156–169. https://doi.org/10.1038/s41563-020-0754-0

[11]

Wilson, H. V. A new method by which sponges may be artificially reared. Science, 1907, 25(649): 912–915. https://doi.org/10.1126/science.25.649.912

[12]

Pomerat, C. M., Lefeber, C. G., Smith, M. Quantitative cine analysis of cell organoid activity. Annals of the New York Academy of Sciences, 1954, 58(7): 1311–1321. https://doi.org/10.1111/j.1749-6632.1954.tb45911.x

[13]

Duryee, W. R., Doherty, J. K. Nuclear and cytoplasmic organoids in the living cell. Annals of the New York Academy of Sciences, 1954, 58(7): 1210–1231. https://doi.org/10.1111/j.1749-6632.1954.tb45904.x

[14]

Mookerjee, S. Experimental dissociation of cells from chick embryos. Nature, 1953, 171(4357): 796. https://doi.org/10.1038/171796a0

[15]

Moscona, A., Moscona, H. The dissociation and aggregation of cells from organ rudiments of the early chick embryo. Journal of Anatomy, 1952, 86(3): 287–301.

[16]

Zwilling, E. Dissociation of chick embryo cells by means of a chelating compound. Science, 1954, 120(3110): 219. https://doi.org/10.1126/science.120.3110.219

[17]

Galtsoff, P. S., Pertzoff, V. Some physicochemical properties of dissociated sponge cells. Journal of General Physiology, 1926, 10(2): 239–255. https://doi.org/10.1085/jgp.10.2.239

[18]

Ganguly, B. The differentiating capacity of dissociated sponge cells. Wilhelm Roux’ Archiv Für Entwicklungsmechanik Der Organismen, 1960, 152(1): 22–34. https://doi.org/10.1007/BF00575218

[19]

Mookerjee, S., Ganguly, B. Contact reaction of cells in sponge aggregation. Wilhelm Roux’ Archiv Für Entwicklungsmechanik Der Organismen, 1964, 155(5): 525–534. https://doi.org/10.1007/BF00572814

[20]

Steinberg, M. S. On the mechanism of tissue reconstruction by dissociated cells, i. population kinetics, differential adhesiveness, and the absence of directed migration. Proceedings of the National Academy of Sciences of the United States of America, 1962, 48(9): 1577–1582. https://doi.org/10.1073/pnas.48.9.1577

[21]

Steinberg, M. S. Mechanism of tissue reconstruction by dissociated cells, II: Time-course of events. Science, 1962, 137(3532): 762–763. https://doi.org/10.1126/science.137.3532.762

[22]

Zwilling, E. Some aspects of differentiation: Disaggregation and reaggregation of early chick embryos. National Cancer Institute Monograph, 1960, 2: 19–39.

[23]

Rheinwatd, J. G., Green, H. Seria cultivation of strains of human epidemal keratinocytes: The Formation keratinizin colonies from single cell is. Cell, 1975, 6(3): 331–343. https://doi.org/10.1016/s0092-8674(75)80001-8

[24]

O’Connor, N., Mulliken, J., Banks-Schlegel, S., Kehinde, O., Green, H. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. The Lancet, 1981, 317(8211): 75–78. https://doi.org/10.1016/S0140-6736(81)90006-4

[25]

Gallico, G. G. III, O’Connor, N. E., Compton, C. C., Kehinde, O., Green, H. Permanent coverage of large burn wounds with autologous cultured human epithelium. New England Journal of Medicine, 1984, 311(7): 448–451. https://doi.org/10.1056/nejm198408163110706

[26]

Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., Jones, J. M. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282(5391): 1145–1147. https://doi.org/10.1126/science.282.5391.1145

[27]

Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663–676. https://doi.org/10.1016/j.cell.2006.07.024

[28]

Sato, T., Vries, R. G., Snippert, H. J., van de Wetering, M., Barker, N., Stange, D. E., van Es, J. H., Abo, A., Kujala, P., Peters, P. J. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459(7244): 262–265. https://doi.org/10.1038/nature07935

[29]

Barker, N., Huch, M., Kujala, P., van de Wetering, M., Snippert, H. J., van Es, J. H., Sato, T., Stange, D. E., Begthel, H., van den Born, M. et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitroi. Cell Stem Cell, 2010, 6(1): 25–36. https://doi.org/10.1016/j.stem.2009.11.013

[30]

Eiraku, M., Takata, N., Ishibashi, H., Kawada, M., Sakakura, E., Okuda, S., Sekiguchi, K., Adachi, T., Sasai, Y. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature, 2011, 472(7341): 51–56. https://doi.org/10.1038/nature09941

[31]

Nakano, T., Ando, S., Takata, N., Kawada, M., Muguruma, K., Sekiguchi, K., Saito, K., Yonemura, S., Eiraku, M., Sasai, Y. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell, 2012, 10(6): 771–785. https://doi.org/10.1016/j.stem.2012.05.009

[32]

Lancaster, M. A., Renner, M., Martin, C. A., Wenzel, D., Bicknell, L. S., Hurles, M. E., Homfray, T., Penninger, J. M., Jackson, A. P., Knoblich, J. A. Cerebral organoids model human brain development and microcephaly. Nature, 2013, 501(7467): 373–379. https://doi.org/10.1038/nature12517

[33]

Post, Y., Puschhof, J., Beumer, J., Kerkkamp, H. M., de Bakker, M. A. G., Slagboom, J., de Barbanson, B., Wevers, N. R., Spijkers, X. M., Olivier, T., et al. Snake venom gland organoids. Cell, 2020, 180: 233–247.e21. https://doi.org/10.1016/j.cell.2019.11.038

[34]

Garreta, E., Kamm, R. D., Chuva de Sousa Lopes, S. M., Lancaster, M. A., Weiss, R., Trepat, X., Hyun, I., Montserrat, N. Rethinking organoid technology through bioengineering. Nature Materials, 2021, 20(2): 145–155. https://doi.org/10.1038/s41563-020-00804-4

[35]

Gjorevski, N., Nikolaev, M., Brown, T. E., Mitrofanova, O., Brandenberg, N., DelRio, F. W., Yavitt, F. M., Liberali, P., Anseth, K. S., Lutolf, M. P. Tissue geometry drives deterministic organoid patterning. Science, 2022, 375(6576): eaaw9021. https://doi.org/10.1126/science.aaw9021

[36]

Hoang, P., Kowalczewski, A., Sun, S. Y., Winston, T. S., Archilla, A. M., Lemus, S. M., Ercan-Sencicek, A. G., Gupta, A. R., Liu, W. Z., Kontaridis, M. I. et al. Engineering spatial-organized cardiac organoids for developmental toxicity testing. Stem Cell Reports, 2021, 16(5): 1228–1244. https://doi.org/10.1016/j.stemcr.2021.03.013

[37]

Ju, S. W., Mu, J. Y., Dokland, T., Zhuang, X. Y., Wang, Q. L., Jiang, H., Xiang, X. Y., Deng, Z. B., Wang, B. M., Zhang, L. F. et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Molecular Therapy, 2013, 21(7): 1345–1357. https://doi.org/10.1038/mt.2013.64

[38]

Astashkina, A. I., Jones, C. F., Thiagarajan, G., Kurtzeborn, K., Ghandehari, H., Brooks, B. D., Grainger, D. W. Nanoparticle toxicity assessment using an invitro 3-D kidney organoid culture model. Biomaterials, 2014, 35(24): 6323–6331. https://doi.org/10.1016/j.biomaterials.2014.04.060

[39]

Hofmann, F., Bläsche, R., Kasper, M., Barth, K. A co-culture system with an organotypic lung slice and an immortal alveolar macrophage cell line to quantify silica-induced inflammation. PLoS One, 2015, 10(1): e0117056. https://doi.org/10.1371/journal.pone.0117056

[40]

Williams, K. E., Lemieux, G. A., Hassis, M. E., Olshen, A. B., Fisher, S. J., Werb, Z. Quantitative proteomic analyses of mammary organoids reveals distinct signatures after exposure to environmental chemicals. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(10): E1343–1351. https://doi.org/10.1073/pnas.1600645113

[41]

Sgodda, M., Dai, Z., Zweigerdt, R., Sharma, A. D., Ott, M., Cantz, T. A scalable approach for the generation of human pluripotent stem cell-derived hepatic organoids with sensitive hepatotoxicity features. Stem Cells and Development, 2017, 26(20): 1490–1504. https://doi.org/10.1089/scd.2017.0023

[42]
Yin, F. C., Zhu, Y. J., Wang, Y. Q., Qin, J. H. Engineering brain organoids to probe impaired neurogenesis induced by cadmium. ACS Biomaterials Science & Engineering, 2018 : acsbiomaterials.8b00160. https://doi.org/10.1021/acsbiomaterials.8b00160
[43]

Forsythe, S. D., Devarasetty, M., Shupe, T., Bishop, C., Atala, A., Soker, S., Skardal, A. Environmental toxin screening using human-derived 3D bioengineered liver and cardiac organoids. Frontiers in Public Health, 2018, 6: 103. https://doi.org/10.3389/fpubh.2018.00103

[44]

Moroni, L., Barbaro, F., Caiment, F., Coleman, O., Costagliola, S., Di Conza, G., Elviri, L., Giselbrecht, S., Krause, C., Mota, C. et al. SCREENED: A multistage model of thyroid gland function for screening endocrine-disrupting chemicals in a biologically sex-specific manner. International Journal of Molecular Sciences, 2020, 21(10): 3648. https://doi.org/10.3390/ijms21103648

[45]

Xie, L. S., Hu, W. Y., Hu, D. P., Shi, G. B., Li, Y., Yang, J. F., Prins, G. S. Effects of inorganic arsenic on human prostate stem-progenitor cell transformation, autophagic flux blockade, and NRF2 pathway activation. Environmental Health Perspectives, 2020, 128(6): 067008. https://doi.org/10.1289/ehp6471

[46]

Caipa Garcia, A. L., Kucab, J. E., Al-Serori, H., Beck, R. S. S., Fischer, F., Hufnagel, M., Hartwig, A., Floeder, A., Balbo, S., Francies, H. et al. Metabolic activation of benzo[a]pyrene by human tissue organoid cultures. International Journal of Molecular Sciences, 2022, 24(1): 606. https://doi.org/10.3390/ijms24010606

[47]

Li, X. Y., Zheng, M., Xu, B., Li, D. L., Shen, Y., Nie, Y. Q., Ma, L., Wu, J. Generation of offspring-producing 3D ovarian organoids derived from female germline stem cells and their application in toxicological detection. Biomaterials, 2021, 279: 121213. https://doi.org/10.1016/j.biomaterials.2021.121213

[48]

Sakib, S., de Lima e Martins Lara, N., Huynh, B. C., Dobrinski, I. Organotypic rat testicular organoids for the study of testicular maturation and toxicology. Frontiers in Endocrinology, 2022, 13: 892342. https://doi.org/10.3389/fendo.2022.892342

[49]

Xu, C. K., Ma, H. J., Gao, F. M., Zhang, C. H., Hu, W. X., Jia, Y. T., Xu, J., Hu, J. Y. Screening of organophosphate flame retardants with placentation-disrupting effects in human trophoblast organoid model and characterization of adverse pregnancy outcomes in mice. Environmental Health Perspectives, 2022, 130(5): 057002. https://doi.org/10.1289/ehp10273

[50]

Xu, X. Q., Li, Z., Ai, X. Q., Tang, Y., Yang, D. Q., Dou, L. Human three-dimensional dental pulp organoid model for toxicity screening of dental materials on dental pulp cells and tissue. International Endodontic Journal, 2022, 55(1): 79–88. https://doi.org/10.1111/iej.13641

[51]

Li, M. H., Gong, J., Ge, L. L., Gao, H., Yang, J. L., Yang, C., Kang, J. H., Fang, Y. J., Xu, H. W. Development of human retinal organoid models for bisphenol toxicity assessment. Ecotoxicology and Environmental Safety, 2022, 245: 114094. https://doi.org/10.1016/j.ecoenv.2022.114094

[52]
Huang, M., Zou, M. S., Mao, S. S., Xu, W. Q., Hong, Y., Wang, H. Y., Gui, F., Yang, L., Lian, F. Z., Chen, R. 3, 5, 6-Trichloro-2-pyridinol confirms ototoxicity in mouse cochlear organotypic cultures and induces cytotoxicity in HEI-OC1 cells. Toxicology and Applied Pharmacology, 2023 , 475: 116612. https://doi.org/10.1016/j.taap.2023.116612
[53]

Çağlayan, E. S. Generation of improved human cerebral organoids from single copy DYRK1A knockout induced pluripotent stem cells in trisomy 21: Hypothetical solutions for neurodevelopmental models and therapeutic alternatives in down syndrome. Cell Biology International, 2016, 40(12): 1256–1270. https://doi.org/10.1002/cbin.10694

[54]

Xiang, Y. F., Tanaka, Y., Patterson, B., Kang, Y. J., Govindaiah, G., Roselaar, N., Cakir, B., Kim, K. Y., Lombroso, A. P., Hwang, S. M. et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell, 2017, 21(3): 383–398.e7. https://doi.org/10.1016/j.stem.2017.07.007

[55]

Wörsdörfer, P., Rockel, A., Alt, Y., Kern, A., Ergün, S. Generation of vascularized neural organoids by co-culturing with mesodermal progenitor cells. STAR Protocols, 2020, 1(1): 100041. https://doi.org/10.1016/j.xpro.2020.100041

[56]

Kelley, K. W., Pașca, S. P. Human brain organogenesis: Toward a cellular understanding of development and disease. Cell, 2022, 185(1): 42–61. https://doi.org/10.1016/j.cell.2021.10.003

[57]

Pamies, D., Block, K., Lau, P., Gribaldo, L., Pardo, C. A., Parreras, P., Smirnova, L., Wiersma, D., Zhao, L., Harris, G., et al. Rotenone exerts developmental neurotoxicity in a human brain spheroid model. Toxicology and Applied Pharmacology, 2018, 354: 101–114. https://doi.org/10.1016/j.taap.2018.02.003

[58]

Huang, Y. Y., Liu, X., Feng, Y., Nie, X. L., Liu, Q., Du, X. L., Wu, Y. C., Liu, T., Zhu, X. Y. Rotenone, an environmental toxin, causes abnormal methylation of the mouse brain organoid’s genome and ferroptosis. International Journal of Medical Sciences, 2022, 19(7): 1184–1197. https://doi.org/10.7150/ijms.74569

[59]

Caporale, N., Leemans, M., Birgersson, L., Germain, P. L., Cheroni, C., Borbély, G., Engdahl, E., Lindh, C., Bressan, R. B., Cavallo, F. et al. From cohorts to molecules: Adverse impacts of endocrine disrupting mixtures. Science, 2022, 375(6582): eabe8244. https://doi.org/10.1126/science.abe8244

[60]

Bilinovich, S. M., Uhl, K. L., Lewis, K., Soehnlen, X., Williams, M., Vogt, D., Prokop, J. W., Campbell, D. B. Integrated RNA sequencing reveals epigenetic impacts of diesel particulate matter exposure in human cerebral organoids. Developmental Neuroscience, 2021, 42(5–6): 195–207. https://doi.org/10.1159/000513536

[61]

Yang, L., Zou, J., Zang, Z. L., Wang, L., Du, Z. L., Zhang, D. D., Cai, Y., Li, M. H., Li, Q. Y., Gao, J. W. et al. Di-(2-ethylhexyl) phthalate exposure impairs cortical development in hESC-derived cerebral organoids. Science of the Total Environment, 2023, 865: 161251. https://doi.org/10.1016/j.scitotenv.2022.161251

[62]

Bu, Q., Huang, Y., Li, M., Dai, Y. P., Fang, X., Chen, K., Liu, Q., Xue, A. Q., Zhong, K., Huang, Y. N. et al. Acrylamide exposure represses neuronal differentiation, induces cell apoptosis and promotes tau hyperphosphorylation in hESC-derived 3D cerebral organoids. Food and Chemical Toxicology, 2020, 144: 111643. https://doi.org/10.1016/j.fct.2020.111643

[63]

Huang, Y., Dai, Y. P., Li, M., Guo, L. L., Cao, C. L., Huang, Y. T., Ma, R., Qiu, S. Y., Su, X. Y., Zhong, K. et al. Exposure to cadmium induces neuroinflammation and impairs ciliogenesis in hESC-derived 3D cerebral organoids. Science of the Total Environment, 2021, 797: 149043. https://doi.org/10.1016/j.scitotenv.2021.149043

[64]

Hua, T., Kiran, S., Li, Y., Sang, Q. X A. Microplastics exposure affects neural development of human pluripotent stem cell-derived cortical spheroids. Journal of Hazardous Materials, 2022, 435: 128884. https://doi.org/10.1016/j.jhazmat.2022.128884

[65]

Henderson, E. D., Hua, T., Kiran, S., Khamis, Z. I., Li, Y., Sang, Q. X A. Long-term effects of nanoscale magnetite on human forebrain-like tissue development in stem-cell-derived cortical spheroids. ACS Biomaterials Science & Engineering, 2022, 8(2): 801–813. https://doi.org/10.1021/acsbiomaterials.1c01487

[66]

Denoth-Lippuner, A., Jaeger, B. N., Liang, T., Royall, L. N., Chie, S. E., Buthey, K., Machado, D., Korobeynyk, V. I., Kruse, M., Munz, C. M. et al. Visualization of individual cell division history in complex tissues using iCOUNT. Cell Stem Cell, 2021, 28(11): 2020–2034.e12. https://doi.org/10.1016/j.stem.2021.08.012

[67]

Kim, J., Lee, S., Lee, J., Park, J. C., Kim, K. H., Ko, J. M., Park, S. H., Kim, S. K., Mook-Jung, I., Lee, J. Y. Neurotoxicity of phenylalanine on human iPSC-derived cerebral organoids. Molecular Genetics and Metabolism, 2022, 136(2): 132–144. https://doi.org/10.1016/j.ymgme.2022.04.005

[68]

Jiang, Y., Gong, H. S., Jiang, S. H., She, C. W., Cao, Y. Multi-walled carbon nanotubes decrease neuronal NO synthase in 3D brain organoids. Science of the Total Environment, 2020, 748: 141384. https://doi.org/10.1016/j.scitotenv.2020.141384

[69]

Modafferi, S., Zhong, X. L., Kleensang, A., Murata, Y., Fagiani, F., Pamies, D., Hogberg, H. T., Calabrese, V., Lachman, H., Hartung, T. et al. Gene–environment interactions in developmental neurotoxicity: A case study of synergy between chlorpyrifos and CHD8 knockout in human BrainSpheres. Environmental Health Perspectives, 2021, 129(7): 077001. https://doi.org/10.1289/ehp8580

[70]

Rickner, H. D., Jiang, L. L., Hong, R., O’Neill, N. K., Mojica, C. A., Snyder, B. J., Zhang, L. S., Shaw, D., Medalla, M., Wolozin, B. et al. Single cell transcriptomic profiling of a neuron-astrocyte assembloid tauopathy model. Nature Communications, 2022, 13: 6275. https://doi.org/10.1038/s41467-022-34005-1

[71]

Kwak, T. H., Kang, J. H., Sai, H. L., Kim, J., Kim, K. P., Park, C., Lee, J. H., Ryu, H. K., Na, J. E., Jo, J. et al. Generation of homogeneous midbrain organoids with in vivo -like cellular composition facilitates neurotoxin-based Parkinson’s disease modeling. Stem Cells, 2020, 38(6): 727–740. https://doi.org/10.1002/stem.3163

[72]

Bian, S., Repic, M., Guo, Z. M., Kavirayani, A., Burkard, T., Bagley, J. A., Krauditsch, C., Knoblich, J. A. Genetically engineered cerebral organoids model brain tumor formation. Nature Methods, 2018, 15(8): 631–639. https://doi.org/10.1038/s41592-018-0070-7

[73]

Chesnut, M., Paschoud, H., Repond, C., Smirnova, L., Hartung, T., Zurich, M. G., Hogberg, H. T., Pamies, D. Human IPSC-derived model to study myelin disruption. International Journal of Molecular Sciences, 2021, 22(17): 9473. https://doi.org/10.3390/ijms22179473

[74]

Li, Z., Xu, J. M., Lang, Y. K., Wu, X. M., Hu, S. Y., Samrat, S. K., Tharappel, A. M., Kuo, L. L., Butler, D., Song, Y. C. et al. Invitro and invivo characterization of erythrosin B and derivatives against Zika virus. Acta Pharmaceutica Sinica B, 2022, 12(4): 1662–1670. https://doi.org/10.1016/j.apsb.2021.10.017

[75]

Zhang, W., Yang, S. L., Yang, M., Herrlinger, S., Shao, Q., Collar, J. L., Fierro, E., Shi, Y. H., Liu, A. M., Lu, H. et al. Modeling microcephaly with cerebral organoids reveals a WDR62–CEP170–KIF2A pathway promoting cilium disassembly in neural progenitors. Nature Communications, 2019, 10: 2612. https://doi.org/10.1038/s41467-019-10497-2

[76]

Seo, Y., Bang, S., Son, J., Kim, D., Jeong, Y., Kim, P., Yang, J. H., Eom, J. H., Choi, N., Kim, H. N. Brain physiome: A concept bridging in vitro 3D brain models and in silico models for predicting drug toxicity in the brain. Bioactive Materials, 2022, 13: 135–148. https://doi.org/10.1016/j.bioactmat.2021.11.009

[77]

Joddar, B., Natividad-Diaz, S. L., Padilla, A. E., Esparza, A. A., Ramirez, S. P., Chambers, D. R., Ibaroudene, H. Engineering approaches for cardiac organoid formation and their characterization. Translational Research, 2022, 250: 46–67. https://doi.org/10.1016/j.trsl.2022.08.009

[78]

Lewis-Israeli, Y. R., Wasserman, A. H., Gabalski, M. A., Volmert, B. D., Ming, Y. X., Ball, K. A., Yang, W. Y., Zou, J. Y., Ni, G. M., Pajares, N. et al. Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease. Nature Communications, 2021, 12: 5142. https://doi.org/10.1038/s41467-021-25329-5

[79]

Hofbauer, P., Jahnel, S. M., Papai, N., Giesshammer, M., Deyett, A., Schmidt, C., Penc, M., Tavernini, K., Grdseloff, N., Meledeth, C. et al. Cardioids reveal self-organizing principles of human cardiogenesis. Cell, 2021, 184(12): 3299–3317.e22. https://doi.org/10.1016/j.cell.2021.04.034

[80]
Kupfer, M. E., Lin, W. H., Ravikumar, V., Qiu, K. Y., Wang, L., Gao, L., Bhuiyan, D. B., Lenz, M., Ai, J., Mahutga, R. R. et al. In situ expansion, differentiation, and electromechanical coupling of human cardiac muscle in a 3D bioprinted, chambered organoid. Circulation Research, 2020 , 127(2): 207–224. https://doi.org/10.1161/circresaha.119.316155
[81]
Sirenko, O., Grimm, F. A., Ryan, K. R., Iwata, Y., Chiu, W. A., Parham, F., Wignall, J. A., Anson, B., Cromwell, E. F., Behl, M. et al. In vitro cardiotoxicity assessment of environmental chemicals using an organotypic human induced pluripotent stem cell-derived model. Toxicology and Applied Pharmacology, 2017 , 322: 60–74. https://doi.org/10.1016/j.taap.2017.02.020
[82]
Fordyce, C. B., Roe, M. T., Ahmad, T., Libby, P., Borer, J. S., Hiatt, W. R., Bristow, M. R., Packer, M., Wasserman, S. M., Braunstein, N., et al. Cardiovascular drug development: is it dead or just hibernating? Journal of American College of Cardiology, 2015 , 65(15): 1567–1582. https://doi.org/10.1016/j.jacc.2015.03.016
[83]

Jiang, Y. Y., Lu, L., Du, C., Li, Y. T., Cheng, W. T., Bi, H. H., Li, G., Zhuang, M., Ren, D. Q., Wang, H. M. et al. Human airway organoids as 3D in vitro models for a toxicity assessment of emerging inhaled pollutants: Tire wear particles. Frontiers in Bioengineering and Biotechnology, 2023, 10: 1105710. https://doi.org/10.3389/fbioe.2022.1105710

[84]

Choi, S., Kim, E. M., Kim, S. Y., Choi, Y., Choi, S., Cho, N., Park, H. J., Kim, K. K. Particulate matter exposure exacerbates cellular damage by increasing stress granule formation in respiratory syncytial virus-infected human lung organoids. Environmental Pollution, 2022, 315: 120439. https://doi.org/10.1016/j.envpol.2022.120439

[85]

Choi, S., Choi, S., Choi, Y., Cho, N., Kim, S. Y., Lee, C. H., Park, H. J., Oh, W. K., Kim, K. K., Kim, E. M. Polyhexamethylene guanidine phosphate increases stress granule formation in human 3D lung organoids under respiratory syncytial virus infection. Ecotoxicology and Environmental Safety, 2022, 229: 113094. https://doi.org/10.1016/j.ecoenv.2021.113094

[86]

Wu, X. H., Ciminieri, C., Bos, I. S. T., Woest, M. E., D’Ambrosi, A., Wardenaar, R., Spierings, D. C. J., Königshoff, M., Schmidt, M., Kistemaker, L. E. M. et al. Diesel exhaust particles distort lung epithelial progenitors and their fibroblast niche. Environmental Pollution, 2022, 305: 119292. https://doi.org/10.1016/j.envpol.2022.119292

[87]
Kim, J. H., Kim, J., Kim, W. J., Choi, Y. H., Yang, S. R., Hong, S. H. Diesel particulate matter 2.5 induces epithelial-to-mesenchymal transition and upregulation of SARS-CoV-2 receptor during human pluripotent stem cell-derived alveolar organoid development. International Journal of Environmental Research and Public Health, 2020 , 17(22): 8410. https://doi.org/10.3390/ijerph17228410
[88]

Wang, R., Kang, N. N., Zhang, W., Chen, B., Xu, S. M., Wu, L. J. The developmental toxicity of PM2.5 on the early stages of fetal lung with human lung bud tip progenitor organoids. Environmental Pollution, 2023, 330: 121764. https://doi.org/10.1016/j.envpol.2023.121764

[89]

Li, Y., Lin, B. C., Hao, D., Du, Z. C., Wang, Q., Song, Z. Y., Li, X., Li, K., Wang, J. H., Zhang, Q. Y. et al. Short-term PM2.5 exposure induces transient lung injury and repair. Journal of Hazardous Materials, 2023, 459: 132227. https://doi.org/10.1016/j.jhazmat.2023.132227

[90]

Lkhagvadorj, K., Zeng, Z. J., Song, J., Reinders-Luinge, M., Kooistra, W., Song, S. S., Krauss-Etschmann, S., Melgert, B. N., Cao, J. J., Hylkema, M. N. Prenatal smoke exposure dysregulates lung epithelial cell differentiation in mouse offspring: Role for AREG-induced EGFR signaling. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2020, 319(4): L742–L751. https://doi.org/10.1152/ajplung.00209.2020

[91]

Di Cristo, L., Boccuni, F., Iavicoli, S., Sabella, S. A human-relevant 3D in vitro platform for an effective and rapid simulation of workplace exposure to nanoparticles: Silica nanoparticles as case study. Nanomaterials, 2020, 10(9): 1761. https://doi.org/10.3390/nano10091761

[92]

Runft, S., Färber, I., Krüger, J., Krüger, N., Armando, F., Rocha, C., Pöhlmann, S., Burigk, L., Leitzen, E., Ciurkiewicz, M. et al. Alternatives to animal models and their application in the discovery of species susceptibility to SARS-CoV-2 and other respiratory infectious pathogens: A review. Veterinary Pathology, 2022, 59(4): 565–577. https://doi.org/10.1177/03009858211073678

[93]

Tan, Q., Choi, K. M., Sicard, D., Tschumperlin, D. J. Human airway organoid engineering as a step toward lung regeneration and disease modeling. Biomaterials, 2017, 113: 118–132. https://doi.org/10.1016/j.biomaterials.2016.10.046

[94]

Kleinstreuer, N., Holmes, A. Harnessing the power of microphysiological systems for COVID-19 research. Drug Discovery Today, 2021, 26(11): 2496–2501. https://doi.org/10.1016/j.drudis.2021.06.020

[95]

Costa, R., Wagner, D. E., Doryab, A., De Santis, M. M., Schorpp, K., Rothenaigner, I., Lehmann, M., Baarsma, H. A., Liu, X. P., Schmid, O. et al. A drug screen with approved compounds identifies amlexanox as a novel Wnt/β-catenin activator inducing lung epithelial organoid formation. British Journal of Pharmacology, 2021, 178(19): 4026–4041. https://doi.org/10.1111/bph.15581

[96]

Khetani, S. R. Pluripotent stem cell-derived human liver organoids enter the realm of high-throughput drug screening. Gastroenterology, 2021, 160(3): 653–655. https://doi.org/10.1053/j.gastro.2020.12.005

[97]

Mun, S. J., Ryu, J. S., Lee, M. O., Son, Y. S., Oh, S. J., Cho, H. S., Son, M. Y., Kim, D. S., Kim, S. J., Yoo, H. J. et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids. Journal of Hepatology, 2019, 71(5): 970–985. https://doi.org/10.1016/j.jhep.2019.06.030

[98]

Park, C. G., Ryu, C. S., Sung, B., Manz, A., Kong, H., Kim, Y. J. Transcriptomic and physiological analysis of endocrine disrupting chemicals Impacts on 3D Zebrafish liver cell culture system. Aquatic Toxicology, 2022, 245: 106105. https://doi.org/10.1016/j.aquatox.2022.106105

[99]

de Bruijn, V. M. P., Wang, Z. G., Bakker, W., Zheng, W. J., Spee, B., Bouwmeester, H. Hepatic bile acid synthesis and secretion: Comparison of in vitro methods. Toxicology Letters, 2022, 365: 46–60. https://doi.org/10.1016/j.toxlet.2022.06.004

[100]

Kim, H., Im, I., Jeon, J. S., Kang, E. H., Lee, H. A., Jo, S., Kim, J. W., Woo, D. H., Choi, Y. J., Kim, H. J. et al. Development of human pluripotent stem cell-derived hepatic organoids as an alternative model for drug safety assessment. Biomaterials, 2022, 286: 121575. https://doi.org/10.1016/j.biomaterials.2022.121575

[101]

Komiya, M., Ishigamori, R., Naruse, M., Ochiai, M., Miyoshi, N., Imai, T., Totsuka, Y. Establishment of novel genotoxicity assay system using murine normal epithelial tissue-derived organoids. Frontiers in Genetics, 2021, 12: 768781. https://doi.org/10.3389/fgene.2021.768781

[102]

Yang, R. J., Liu, S. Y., Liang, X. X., Yin, N. Y., Jiang, L. S., Zhang, Y., Faiola, F. TBBPA, TBBPS, and TCBPA disrupt hESC hepatic differentiation and promote the proliferation of differentiated cells partly via up-regulation of the FGF10 signaling pathway. Journal of Hazardous Materials, 2021, 401: 123341. https://doi.org/10.1016/j.jhazmat.2020.123341

[103]
Palazzolo, S., Caligiuri, I., Sfriso, A. A., Mauceri, M., Rotondo, R., Campagnol, D., Canzonieri, V., Rizzolio, F. Early warnings by liver organoids on short- and long-chain PFAS toxicity. Toxics, 2022, 10(2): 91. https://doi.org/10.3390/toxics10020091
[104]

Jiang, S. Q., Xu, F., Jin, M. L., Wang, Z., Xu, X. D., Zhou, Y., Wang, J. B., Gu, L. J., Fan, H., Fan, Y. H. et al. Development of a high-throughput micropatterned agarose scaffold for consistent and reproducible hPSC-derived liver organoids. Biofabrication, 2023, 15(1): 015006. https://doi.org/10.1088/1758-5090/ac933c

[105]

Cheng, W., Zhou, Y., Xie, Y. C., Li, Y., Zhou, R., Wang, H., Feng, Y., Wang, Y. Combined effect of polystyrene microplastics and bisphenol A on the human embryonic stem cells-derived liver organoids: The hepatotoxicity and lipid accumulation. Science of the Total Environment, 2023, 854: 158585. https://doi.org/10.1016/j.scitotenv.2022.158585

[106]

Wang, S. Y., Wang, X., Tan, Z. L., Su, Y. X., Liu, J., Chang, M. Y., Yan, F., Chen, J., Chen, T., Li, C. J. et al. Human ESC-derived expandable hepatic organoids enable therapeutic liver repopulation and pathophysiological modeling of alcoholic liver injury. Cell Research, 2019, 29(12): 1009–1026. https://doi.org/10.1038/s41422-019-0242-8

[107]

Elbadawy, M., Yamanaka, M., Goto, Y., Hayashi, K., Tsunedomi, R., Hazama, S., Nagano, H., Yoshida, T., Shibutani, M., Ichikawa, R. et al. Efficacy of primary liver organoid culture from different stages of non-alcoholic steatohepatitis (NASH) mouse model. Biomaterials, 2020, 237: 119823. https://doi.org/10.1016/j.biomaterials.2020.119823

[108]
Mekky, G., Seeds, M., Diab, A. E. A A., Shehata, A. M., Ahmed-Farid, O. A. H., Alzebdeh, D., Bishop, C., Atala, A. The potential toxic effects of magnesium oxide nanoparticles and valproate on liver tissue. Journal of Biochemical and Molecular Toxicology, 2021 , 35(3): e22676. https://doi.org/10.1002/jbt.22676
[109]

Taguchi, A., Kaku, Y., Ohmori, T., Sharmin, S., Ogawa, M., Sasaki, H., Nishinakamura, R. Redefining the InVivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell, 2014, 14(1): 53–67. https://doi.org/10.1016/j.stem.2013.11.010

[110]

Tan, Z. L., Rak-Raszewska, A., Skovorodkin, I., Vainio, S. J. Mouse embryonic stem cell-derived ureteric bud progenitors induce nephrogenesis. Cells, 2020, 9(2): 329. https://doi.org/10.3390/cells9020329

[111]

Lawlor, K. T., Vanslambrouck, J. M., Higgins, J. W., Chambon, A., Bishard, K., Arndt, D., Er, P. X., Wilson, S. B., Howden, S. E., Tan, K. S. et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nature Materials, 2021, 20(2): 260–271. https://doi.org/10.1038/s41563-020-00853-9

[112]

Taguchi, A., Nishinakamura, R. Higher-order kidney organogenesis from pluripotent stem cells. Cell Stem Cell, 2017, 21(6): 730–746.e6. https://doi.org/10.1016/j.stem.2017.10.011

[113]

He, C. Y., Ruan, F. K., Jiang, S. W., Zeng, J., Yin, H. Y., Liu, R., Zhang, Y. X., Huang, L. Q., Wang, C. G., Ma, S. H. et al. Black phosphorus quantum dots cause nephrotoxicity in organoids, mice, and human cells. Small, 2020, 16(22): 2001371. https://doi.org/10.1002/smll.202001371

[114]

Gu, S. Y., Wu, G. S., Lu, D., Wang, Y., Tang, L. M., Zhang, W. D. Human kidney organoids model of Esculentoside A nephrotoxicity to investigate the role of epithelial-mesenchymal transition via STING signaling. Toxicology Letters, 2023, 373: 172–183. https://doi.org/10.1016/j.toxlet.2022.11.019

[115]

Bejoy, J., Qian, E. S., Woodard, L. E. Tissue culture models of AKI: From tubule cells to human kidney organoids. Journal of the American Society of Nephrology, 2022, 33(3): 487–501. https://doi.org/10.1681/asn.2021050693

[116]

Digby, J. L. M., Vanichapol, T., Przepiorski, A., Davidson, A. J., Sander, V. Evaluation of cisplatin-induced injury in human kidney organoids. American Journal of Physiology-Renal Physiology, 2020, 318(4): F971–F978. https://doi.org/10.1152/ajprenal.00597.2019

[117]

Kim, J. W., Nam, S. A., Seo, E., Lee, J. Y., Kim, D., Ju, J. H., Lim, S. W., Kim, H. L., Kim, H. W., Yang, C. W. et al. Human kidney organoids model the tacrolimus nephrotoxicity and elucidate the role of autophagy. The Korean Journal of Internal Medicine, 2021, 36(6): 1420–1436. https://doi.org/10.3904/kjim.2020.323

[118]

Rock, S. A., Jiang, K., Wu, Y. Y., Liu, Y. J., Li, J., Weiss, H. L., Wang, C., Jia, J. H., Gao, T. Y., Evers, B. M. Neurotensin regulates proliferation and stem cell function in the small intestine in a nutrient-dependent manner. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13(2): 501–516. https://doi.org/10.1016/j.jcmgh.2021.09.006

[119]

Wang, N. Z., Liu, M. H., Bi, F. R., Ma, L., Qin, L. N., Wang, Y., Gu, K., Ge, X. M., Yan, H. L. Effects of various marine toxins on the mouse intestine organoid model. Toxins, 2022, 14(12): 829. https://doi.org/10.3390/toxins14120829

[120]

Shaoyong, W. K., Jin, H. L., Jiang, X., Xu, B. C., Liu, Y. L., Wang, Y. Z., Jin, M. L. Benzo[a]pyrene-loaded aged polystyrene microplastics promote colonic barrier injury via oxidative stress-mediated Notch signalling. Journal of Hazardous Materials, 2023, 457: 131820. https://doi.org/10.1016/j.jhazmat.2023.131820

[121]

Hou, Z. K., Meng, R., Chen, G. H., Lai, T. M., Qing, R., Hao, S. L., Deng, J., Wang, B. C. Distinct accumulation of nanoplastics in human intestinal organoids. Science of the Total Environment, 2022, 838: 155811. https://doi.org/10.1016/j.scitotenv.2022.155811

[122]

Xie, S., Jiang, L., Wang, M. J., Sun, W. J., Yu, S. Y., Turner, J. R., Yu, Q. H. Cadmium ingestion exacerbates Salmonella infection, with a loss of goblet cells through activation of Notch signaling pathways by ROS in the intestine. Journal of Hazardous Materials, 2020, 391: 122262. https://doi.org/10.1016/j.jhazmat.2020.122262

[123]

Park, J. H., Choi, A. J., Kim, S. J., Cheong, S. W., Jeong, S. Y. AhR activation by 6-formylindolo[3, 2-b]carbazole and 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin inhibit the development of mouse intestinal epithelial cells. Environmental Toxicology and Pharmacology, 2016, 43: 44–53. https://doi.org/10.1016/j.etap.2016.02.007

[124]

Yu, L., Tian, X., Gao, D. X., Lang, Y., Zhang, X. X., Yang, C., Gu, M. M., Shi, J. M., Zhou, P. K., Shang, Z. F. Oral administration of hydroxylated-graphene quantum dots induces intestinal injury accompanying the loss of intestinal stem cells and proliferative progenitor cells. Nanotoxicology, 2019, 13(10): 1409–1421. https://doi.org/10.1080/17435390.2019.1668068

[125]

Rodrigues, D., de Souza, T., Coyle, L., Di Piazza, M., Herpers, B., Ferreira, S., Zhang, M., Vappiani, J., Sévin, D. C., Gabor, A. et al. New insights into the mechanisms underlying 5-fluorouracil-induced intestinal toxicity based on transcriptomic and metabolomic responses in human intestinal organoids. Archives of Toxicology, 2021, 95(8): 2691–2718. https://doi.org/10.1007/s00204-021-03092-2

[126]

Winkler, J., Liu, P. Y., Phong, K., Hinrichs, J. H., Ataii, N., Williams, K., Hadler-Olsen, E., Samson, S., Gartner, Z. J., Fisher, S. et al. Bisphenol A replacement chemicals, BPF and BPS, induce protumorigenic changes in human mammary gland organoid morphology and proteome. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(11): e2115308119. https://doi.org/10.1073/pnas.2115308119

[127]

Myhre, O., Låg, M., Villanger, G. D., Oftedal, B., Øvrevik, J., Holme, J. A., Aase, H., Paulsen, R. E., Bal-Price, A., Dirven, H. Early life exposure to air pollution particulate matter (PM) as risk factor for attention deficit/hyperactivity disorder (ADHD): Need for novel strategies for mechanisms and causalities. Toxicology and Applied Pharmacology, 2018, 354: 196–214. https://doi.org/10.1016/j.taap.2018.03.015

[128]

Schmeisser, S., Miccoli, A., von Bergen, M., Berggren, E., Braeuning, A., Busch, W., Desaintes, C., Gourmelon, A., Grafström, R., Harrill, J. et al. New approach methodologies in human regulatory toxicology–Not if, but how and when!. Environment International, 2023, 178: 108082. https://doi.org/10.1016/j.envint.2023.108082

[129]

Chandra, L., Borcherding, D. C., Kingsbury, D., Atherly, T., Ambrosini, Y. M., Bourgois-Mochel, A., Yuan, W., Kimber, M., Qi, Y. J., Wang, Q. et al. Derivation of adult canine intestinal organoids for translational research in gastroenterology. BMC Biology, 2019, 17(1): 33. https://doi.org/10.1186/s12915-019-0652-6

[130]

Rauth, S., Karmakar, S., Batra, S. K., Ponnusamy, M. P. Recent advances in organoid development and applications in disease modeling. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 2021, 1875(2): 188527. https://doi.org/10.1016/j.bbcan.2021.188527

[131]

Snyder, J., Wang, C. M., Zhang, A. Q., Li, Y., Luchan, J., Hosic, S., Koppes, R., Carrier, R. L., Koppes, A. Materials and microenvironments for engineering the intestinal epithelium. Annals of Biomedical Engineering, 2020, 48(7): 1916–1940. https://doi.org/10.1007/s10439-020-02470-8

[132]

Devarasetty, M., Forsythe, S., Shupe, T., Soker, S., Bishop, C., Atala, A., Skardal, A. Optical tracking and digital quantification of beating behavior in bioengineered human cardiac organoids. Biosensors, 2017, 7(4): 24. https://doi.org/10.3390/bios7030024

[133]

Skardal, A., Aleman, J., Forsythe, S., Rajan, S., Murphy, S., Devarasetty, M., Pourhabibi Zarandi, N., Nzou, G., Wicks, R., Sadri-Ardekani, H. et al. Drug compound screening in single and integrated multi-organoid body-on-a-chip systems. Biofabrication, 2020, 12(2): 025017. https://doi.org/10.1088/1758-5090/ab6d36

[134]

Hedrich, W. D., Panzica-Kelly, J. M., Chen, S. J., Strassle, B., Hasson, C., Lecureux, L., Wang, L. F., Chen, W. Q., Sherry, T., Gan, J. P. et al. Development and characterization of rat duodenal organoids for ADME and toxicology applications. Toxicology, 2020, 446: 152614. https://doi.org/10.1016/j.tox.2020.152614

[135]

Wu, X., Chen, Y. C., Luz, A., Hu, G., Tokar, E. J. Cardiac development in the presence of cadmium: An in vitro study using human embryonic stem cells and cardiac organoids. Environmental Health Perspectives, 2022, 130(11): 117002. https://doi.org/10.1289/ehp11208

[136]

Janssen, A. W. F., Duivenvoorde, L. P. M., Rijkers, D., Nijssen, R., Peijnenburg, A. A. C. M., van der Zande, M., Louisse, J. Cytochrome P450 expression, induction and activity in human induced pluripotent stem cell-derived intestinal organoids and comparison with primary human intestinal epithelial cells and Caco-2 cells. Archives of Toxicology, 2021, 95(3): 907–922. https://doi.org/10.1007/s00204-020-02953-6

[137]

Mills, R. J., Parker, B. L., Quaife-Ryan, G. A., Voges, H. K., Needham, E. J., Bornot, A., Ding, M., Andersson, H., Polla, M., Elliott, D. A. et al. Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway. Cell Stem Cell, 2019, 24(6): 895–907.e6. https://doi.org/10.1016/j.stem.2019.03.009

[138]
Rahman, L., Williams, A., Gelda, K., Nikota, J., Wu, D. M., Vogel, U., Halappanavar, S. 21st century tools for nanotoxicology: Transcriptomic biomarker panel and precision-cut lung slice organ mimic system for the assessment of nanomaterial-induced lung fibrosis. Small, 2020 , 16(36): 2000272. https://doi.org/10.1002/smll.202000272
[139]

Lancaster, M. A., Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science, 2014, 345(6194): 1247125. https://doi.org/10.1126/science.1247125

[140]

Koning, M., van den Berg, C. W., Rabelink, T. J. Stem cell-derived kidney organoids: Engineering the vasculature. Cellular and Molecular Life Sciences, 2020, 77(12): 2257–2273. https://doi.org/10.1007/s00018-019-03401-0

[141]

Lancaster, M. A., Corsini, N. S., Wolfinger, S., Gustafson, E. H., Phillips, A. W., Burkard, T. R., Otani, T., Livesey, F. J., Knoblich, J. A. Guided self-organization and cortical plate formation in human brain organoids. Nature Biotechnology, 2017, 35(7): 659–666. https://doi.org/10.1038/nbt.3906

[142]

Nguyen, D. G., Funk, J., Robbins, J. B., Crogan-Grundy, C., Presnell, S. C., Singer, T., Roth, A. B. Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLoS One, 2016, 11(7): e0158674. https://doi.org/10.1371/journal.pone.0158674

[143]

Leonard, F., Collnot, E. M., Lehr, C. M. A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro. Molecular Pharmaceutics, 2010, 7(6): 2103–2119. https://doi.org/10.1021/mp1000795

[144]

Vishy, C. E., Swietlicki, E. A., Gazit, V., Amara, S., Heslop, G., Lu, J. Y., Levin, M. S., Rubin, D. C. Epimorphin regulates the intestinal stem cell niche via effects on the stromal microenvironment. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2018, 315(2): G185–G194. https://doi.org/10.1152/ajpgi.00224.2017

[145]

Kim, Y. C., Byun, S., Seok, S., Guo, G., Xu, H. E., Kemper, B., Kemper, J. K. Small heterodimer partner and fibroblast growth factor 19Inhibit expression of NPC1L1 in mouse intestine and cholesterol absorption. Gastroenterology, 2019, 156(4): 1052–1065. https://doi.org/10.1053/j.gastro.2018.11.061

[146]

Bouwmeester, M. C., Bernal, P. N., Oosterhoff, L. A., van Wolferen, M. E., Lehmann, V., Vermaas, M., Buchholz, M. B., Peiffer, Q. C., Malda, J., van der Laan, L. J. W. et al. Bioprinting of human liver-derived epithelial organoids for toxicity studies. Macromolecular Bioscience, 2021, 21(12): e2100327. https://doi.org/10.1002/mabi.202100327

[147]

Kaushik, G., Gupta, K., Harms, V., Torr, E., Evans, J., Johnson, H. J., Soref, C., Acevedo-Acevedo, S., Antosiewicz-Bourget, J., Mamott, D. et al. Engineered perineural vascular plexus for modeling developmental toxicity. Advanced Healthcare Materials, 2020, 9(16): e2000825. https://doi.org/10.1002/adhm.202000825

[148]

Brüll, M. Incorporation of stem cell-derived astrocytes into neuronal organoids to allow neuro-glial interactions in toxicological studies. ALTEX-Alternatives to Animal Experimentation, 2020, 37(3): 409–428. https://doi.org/10.14573/altex.1911111

[149]

Habibey, R., Rojo Arias, J. E., Striebel, J., Busskamp, V. Microfluidics for neuronal cell and circuit engineering. Chemical Reviews, 2022, 122(18): 14842–14880. https://doi.org/10.1021/acs.chemrev.2c00212

[150]

Tao, T. T., Deng, P. W., Wang, Y. Q., Zhang, X., Guo, Y. Q., Chen, W. W., Qin, J. H. Microengineered multi-organoid system from hiPSCs to recapitulate human liver-islet axis in normal and type 2 diabetes. Advanced Science, 2022, 9(5): 2103495. https://doi.org/10.1002/advs.202103495

[151]

Kühnl, J., Tao, T. P., Brandmair, K., Gerlach, S., Rings, T., Müller-Vieira, U., Przibilla, J., Genies, C., Jaques-Jamin, C., Schepky, A. et al. Characterization of application scenario-dependent pharmacokinetics and pharmacodynamic properties of permethrin and hyperforin in a dynamic skin and liver multi-organ-chip model. Toxicology, 2021, 448: 152637. https://doi.org/10.1016/j.tox.2020.152637

[152]

Saheli, M., Sepantafar, M., Pournasr, B., Farzaneh, Z., Vosough, M., Piryaei, A., Baharvand, H. Three-dimensional liver-derived extracellular matrix hydrogel promotes liver organoids function. Journal of Cellular Biochemistry, 2018, 119(6): 4320–4333. https://doi.org/10.1002/jcb.26622

[153]

Abreu, C. M., Gama, L., Krasemann, S., Chesnut, M., Odwin-Dacosta, S., Hogberg, H. T., Hartung, T., Pamies, D. Microglia increase inflammatory responses in iPSC-derived human BrainSpheres. Frontiers in Microbiology, 2018, 9: 2766. https://doi.org/10.3389/fmicb.2018.02766

[154]

Jung, K. B., Lee, H. N., Son, Y. S., Lee, M. O., Kim, Y. D., Oh, S. J., Kwon, O., Cho, S., Cho, H. S., Kim, D. S. et al. Interleukin-2 induces the in vitro maturation of human pluripotent stem cell-derived intestinal organoids. Nature Communications, 2018, 9: 3039. https://doi.org/10.1038/s41467-018-05450-8

[155]

Bantounas, I., Ranjzad, P., Tengku, F., Silajdžić, E., Forster, D., Asselin, M. C., Lewis, P., Lennon, R., Plagge, A., Wang, Q. et al. Generation of functioning nephrons by implanting human pluripotent stem cell-derived kidney progenitors. Stem Cell Reports, 2018, 10(3): 766–779. https://doi.org/10.1016/j.stemcr.2018.01.008

[156]

van den Berg, C. W., Ritsma, L., Avramut, M. C., Wiersma, L. E., van den Berg, B. M., Leuning, D. G., Lievers, E., Koning, M., Vanslambrouck, J. M., Koster, A. J. et al. Renal subcapsular transplantation of PSC-derived kidney organoids induces neo-vasculogenesis and significant glomerular and tubular maturation InVivo. Stem Cell Reports, 2018, 10(3): 751–765. https://doi.org/10.1016/j.stemcr.2018.01.041

[157]
Cooper, T. T., Hess, D. A., Verma, S. Vascular organoids: Are we entering a new area of cardiometabolic research? Cell Metabolism, 2019 , 29(4): 792–794. https://doi.org/10.1016/j.cmet.2019.03.008
[158]

Nikonorova, V. G., Chrishtop, V. V., Mironov, V. A., Prilepskii, A. Y. Advantages and potential benefits of using organoids in nanotoxicology. Cells, 2023, 12(4): 610. https://doi.org/10.3390/cells12040610

[159]

Morales Pantoja, I. E., Smirnova, L., Muotri, A. R., Wahlin, K. J., Kahn, J., Boyd, J. L., Gracias, D. H., Harris, T. D., Cohen-Karni, T., Caffo, B. S., et al. First organoid intelligence (OI) workshop to form an OI community. Frontiers in Artificial Intelligence, 2023, 6: 1116870. https://doi.org/10.3389/frai.2023.1116870

Cell Organoid
Cite this article:
Fang Y, Akhtar H, Wang J. The application of organoids in toxicity test of environmental pollutants. Cell Organoid, 2024, https://doi.org/10.26599/CO.2024.9410002

513

Views

83

Downloads

1

Crossref

Altmetrics

Received: 30 January 2024
Revised: 09 April 2024
Accepted: 21 April 2024
Published: 26 June 2024
© The Author(s) 2024. Published by Tsinghua University Press

Food Science of Animal Products published by Tsinghua University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return