AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access | Online First

Generation of patient-derived glioblastoma organoids: a comparative study of enzymatic digestion and mechanical fragmentation methods

Jian Zhang1Jiping Liu1Yanghua Shi1Lanyang Li1Chen Wang1Mingjie Rong1Bangbao Tao2Hong Tan3Wei Deng4Chunhui Cai1( )Xinxin Han1,5( )
Shanghai Lisheng Biotech, Shanghai 200092, China
Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
Organ Regeneration X Lab, LiSheng East China Institute of Biotechnology, Peking University, Nantong 226299, China
Show Author Information

Highlights

• Successfully generated four patient-derived organoids.

• RNA-seq was used to monitor gene expression changes at various stages of organoid growth.

• Both propagation methods successfully maintain the typical characteristics and immune microenvironment of glioblastoma (GBM) organoids.

• The GBM organoids prepared by mechanical fragmentation retained vascular architecture.

Graphical Abstract

In this study, we employed enzymatic digestion and mechanical fragmentation to generate Glioblastoma (GBM) organoids.Utilizing photography, RNA sequencing (RNA-seq), and histological staining, we meticulously documented and compared the morphological and molecular features of the organoids derived from both methods.Our findings underscore the preservation of GBM’s key characteristics, including its unique tissue architecture and gene expression patterns.

Abstract

Glioblastoma (GBM) is a highly aggressive brain tumor characterized by rapid growth and high heterogeneity, posing challenges for fundamental research and personalized drug screening due to the lack of suitable models. GBM organoids serve as an innovative research tool, providing a valuable model for studying the biological characteristics of GBM. In this study, we successfully generated 4 GBM organoids and employed enzymatic digestion and mechanical fragmentation techniques for subsequent cultivation. Through continuous observation, pathological assessment, and RNA sequencing (RNA-seq), we observed that all the organoids generated through both methods demonstrated good growth characteristics. The organoids derived from mechanical fragmentation not only achieved a two-dimensional (2D) area of ~ 1.5 mm2 but also exhibited distinct vascular structures. The organoids derived from enzymatic digestion achieved a 2D area of approximately 0.8 mm2. Furthermore, RNA-seq analysis has revealed that organoids cultured using two distinct methods exhibit a heterogeneous cellular composition, comprising a total of 20 cell types (endothelial, immune cells ...). Our studies show that both methods successfully maintained the essential characteristics of GBM, encompassing its distinctive tissue structure and gene expression patterns. Each method exhibits its own attributes, contributing to the understanding of GBM organoids.

References

[1]

Schaff, L. R., Mellinghoff, I. K. Glioblastoma and other primary brain malignancies in adults: a review. JAMA, 2023, 329(7): 574–587. https://doi.org/10.1001/jama.2023.0023

[2]

Ahluwalia, M. S., Reardon, D. A., Abad, A. P., Curry, W. T., Wong, E. T., Figel, S. A., Mechtler, L. L., Peereboom, D. M., Hutson, A. D., Withers, H. G. et al. Phase IIa study of SurVaxM plus adjuvant temozolomide for newly diagnosed glioblastoma. Journal of Clinical Oncology, 2023, 41(7): 1453–1465. https://doi.org/10.1200/jco.22.00996

[3]

Tsien, C. I., Pugh, S. L., Dicker, A. P., Raizer, J. J., Matuszak, M. M., Lallana, E. C., Huang, J. Y., Algan, O., Deb, N., Portelance, L. et al. NRG oncology/RTOG1205: A randomized phase II trial of concurrent bevacizumab and reirradiation versus bevacizumab alone as treatment for recurrent glioblastoma. Journal of Clinical Oncology, 2023, 41(6): 1285–1295. https://doi.org/10.1200/jco.22.00164

[4]

Gonçalves, E., Poulos, R. C., Cai, Z., Barthorpe, S., Manda, S. S., Lucas, N., Beck, A., Bucio-Noble, D., Dausmann, M., Hall, C., et al. Pan-cancer proteomic map of 949 human cell lines. Cancer Cell, 2022, 40(8): 835–849. https://doi.org/10.1016/j.ccell.2022.06.010

[5]

Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., J Wilson, C., Lehár, J., Kryukov, G. V., Sonkin, D. et al. Addendum: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012, 492(7428): 290. https://doi.org/10.1038/nature11735

[6]

Cowan, C. S., Renner, M., De Gennaro, M., Gross-Scherf, B., Goldblum, D., Hou, Y. Y., Munz, M., Rodrigues, T. M., Krol, J., Szikra, T., et al. Cell types of the human retina and its organoids at single-cell resolution. Cell, 2020, 182(6): 1623–1640. https://doi.org/10.1016/j.cell.2020.08.013

[7]

Mo, S. B., Tang, P. Y., Luo, W. Q., Zhang, L., Li, Y. Q., Hu, X., Ma, X. J., Chen, Y. K., Bao, Y. C., He, X. F. et al. Patient-derived organoids from colorectal cancer with paired liver metastasis reveal tumor heterogeneity and predict response to chemotherapy. Advanced Science, 2022, 9(31): e2204097. https://doi.org/10.1002/advs.202204097

[8]

Han, X. X., Cai, C. H., Deng, W., Shi, Y. H., Li, L. Y., Wang, C., Zhang, J., Rong, M. J., Liu, J. P., Fang, B. J. et al. Landscape of human organoids: Ideal model in clinics and research. The Innovation, 2024, 5(3): 100620. https://doi.org/10.1016/j.xinn.2024.100620

[9]

Bian, S., Repic, M., Guo, Z. M., Kavirayani, A., Burkard, T., Bagley, J. A., Krauditsch, C., Knoblich, J. A. Genetically engineered cerebral organoids model brain tumor formation. Nature Methods, 2018, 15(8): 631–639. https://doi.org/10.1038/s41592-018-0070-7

[10]

Gao, D., Vela, I., Sboner, A., Iaquinta, P. J., Karthaus, W. R., Gopalan, A., Dowling, C., Wanjala, J. N., Undvall, E. A., Arora, V. K. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell, 2014, 159(1): 176–187. https://doi.org/10.1016/j.cell.2014.08.016

[11]

Drost, J., van Jaarsveld, R. H., Ponsioen, B., Zimberlin, C., van Boxtel, R., Buijs, A., Sachs, N., Overmeer, R. M., Offerhaus, G. J., Begthel, H. et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature, 2015, 521(7550): 43–47. https://doi.org/10.1038/nature14415

[12]

Broutier, L., Mastrogiovanni, G., Verstegen, M. M., Francies, H. E., Gavarró, L. M., Bradshaw, C. R., Allen, G. E., Arnes-Benito, R., Sidorova, O., Gaspersz, M. P. et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nature Medicine, 2017, 23(12): 1424–1435. https://doi.org/10.1038/nm.4438

[13]
Sachs, N., de Ligt, J., Kopper, O., Gogola, E., Bounova, G., Weeber, F., Balgobind, A. V., Wind, K., Gracanin, A., Begthel, H. et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell, 2018, 172(1–2): 373–386.e10. https://doi.org/10.1016/j.cell.2017.11.010
[14]

Kopper, O., de Witte, C. J., Lõhmussaar, K., Valle-Inclan, J. E., Hami, N., Kester, L., Balgobind, A. V., Korving, J., Proost, N., Begthel, H. et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nature Medicine, 2019, 25(5): 838–849. https://doi.org/10.1038/s41591-019-0422-6

[15]

Boj, S. F., Hwang, C. I., Baker, L. A., Chio, I. I., Engle, D. D., Corbo, V., Jager, M., Ponz-Sarvise, M., Tiriac, H., Spector, M. S. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell, 2015, 160(1–2): 324–338. https://doi.org/10.1016/j.cell.2014.12.021

[16]

Mun, S. J., Ryu, J. S., Lee, M. O., Son, Y. S., Oh, S. J., Cho, H. S., Son, M. Y., Kim, D. S., Kim, S. J., Yoo, H. J. et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids. Journal of Hepatology, 2019, 71(5): 970–985. https://doi.org/10.1016/j.jhep.2019.06.030

[17]

Andersen, B. M., Faust, A. C., Wheeler, M. A., Chiocca, E. A., Reardon D. A., Quintana, F. J. Glial and myeloid heterogeneity in the brain tumour microenvironment. Nature Review Cancer, 2021, 21(12): 786–802. https://doi.org/10.1038/s41568-021-00397-3

[18]

Hubert, C. G., Rivera, M., Spangler, L. C., Wu, Q. L., Mack, S. C., Prager, B. C., Couce, M., McLendon, R. E., Sloan, A. E., Rich, J. N. A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo. Cancer Research, 2016, 76(8): 2465–2477. https://doi.org/10.1158/0008-5472.can-15-2402

[19]

Jacob, F., Salinas, R. D., Zhang, D. Y., Nguyen, P. T. T., Schnoll, J. G., Wong, S. Z. H., Thokala, R., Sheikh, S., Saxena, D., Prokop, S. et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell, 2020, 180(1): 188–204.e22. https://doi.org/10.1016/j.cell.2019.11.036

[20]

Ogawa, J., Pao, G., Shokhirev, M., Verma, I. Glioblastoma model using human cerebral organoids. Cell Reports, 2018, 23(4): 1220–1229. https://doi.org/10.1016/j.celrep.2018.03.105

[21]
Ratliff, M., Kim, H., Qi, H., Kim, M., Ku, B., Azorin, D. D., Hausmann, D., Khajuria, R. K., Patel, A., Maier, E., et al. Patient-derived tumor organoids for guidance of personalized drug therapies in recurrent glioblastoma. International Journal of Molecular Sciences, 2022 , 23(12): 6572. https://doi.org/10.3390/ijms23126572
[22]

Silvia, V., Kedaigle Amanda, J., Simmons Sean, K., Allison, N., Marina, R., Giorgia, Q., Bruna, P., Lan, N., Xian, A., Aviv, R. et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature, 2019, 570(7762): 523–527. https://doi.org/10.1038/s41586-019-1289-x

[23]

Zhang, C. C., Jin, M. Z., Zhao, J. N., Chen, J. X., Jin, W. L. Organoid models of glioblastoma: Advances, applications and challenges. American Journal of Cancer Research, 2020, 10(8): 2242–2257.

[24]

Qiu, G-.Z., Mao, X.-Y., Ma, Y., Gao, X.-C., Wang, Z., Jin, M.-Z., Sun, W., Zou, Y.-X., Lin, J., Fu, H.-L., et al. Ubiquitin-specific protease 22 acts as an oncoprotein to maintain glioma malignancy through deubiquitinating b cell-specific moloney murine leukemia virus integration site 1 for stabilization. Cancer Science, 2018, 109(7): 2199–2210. https://doi.org/10.1111/cas.13646

[25]

Li, H., Chen, L., Li, J. J., Zhou, Q., Huang, A. N., Liu, W. W., Wang, K., Gao, L., Qi, S. T., Lu, Y. T. MiR-519a enhances chemosensitivity and promotes autophagy in glioblastoma by targeting STAT3/Bcl2 signaling pathway. Journal of Hematology & Oncology, 2018, 11(1): 70. https://doi.org/10.1186/s13045-018-0618-0

[26]

Allen, M., Bjerke, M., Edlund, H., Nelander, S., Westermark, B. Origin of the u87mg glioma cell line: good news and bad news. Science Translation Medicine, 2016, 8(354): 354re3. https://doi.org/10.1126/scitranslmed.aaf685

[27]

Da Hora, C. C., Schweiger, M. W., Wurdinger, T., Tannous, B. A. Patient-derived glioma models: from patients to dish to animals. Cells, 2019, 8(10): 1177. https://doi.org/10.3390/cells8101177

[28]

Krieger, T., Tirier, S., Park, J., Eisemann, T., Peterziel, H., Angel, P., Eils, R., Conrad, C. Modeling glioblastoma invasion using human brain organoids and single-cell transcriptomics. Neuro-Oncology, 2020, 22(8): 1138–1149. https://doi.org/10.1093/neuonc/noaa091

[29]

Neftel, C., Laffy, J., Filbin, M. G., Hara, T., Shore, M., Shore, M., Rahme, G., Rahme, G., Richman, A. R., Richman, A. R. et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell, 2019, 178(4): 835–849. https://doi.org/10.1016/j.cell.2019.06.024

[30]

Pitt, J. M., Marabelle, A., Eggermont, A., Soria, J. C., Kroemer, G., Zitvogel, L. Targeting the tumor microenvironment: Removing obstruction to anticancer immune responses and immunotherapy. Annals of Oncology, 2016, 27(8): 1482–1492. https://doi.org/10.1093/annonc/mdw168

[31]

Jin, M. Z., Jin, W. L. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduction and Targeted Therapy, 2020, 5: 166. https://doi.org/10.1038/s41392-020-00280-x

[32]

Tang, H. D., Qiao, J., Fu, Y.-X. Immunotherapy and tumor microenvironment. Cancer Letters, 2016, 370(1): 85–90. https://doi.org/10.1016/j.canlet.2015.10.009

[33]

Fu, T., Dai, L. J., Wu, S. Y., Xiao, Y., Ma, D., Jiang, Y. Z., Shao, Z. M. Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. Journal of Hematology & Oncology, 2021, 14(1): 98. https://doi.org/10.1186/s13045-021-01103-4

[34]

Grönholm, M., Feodoroff, M., Antignani, G., Martins, B., Hamdan, F., Cerullo, V. Patient-derived organoids for precision cancer immunotherapy. Cancer Research, 2021, 81(12): 3149–3155. https://doi.org/10.1158/0008-5472.CAN-20-4026

Cell Organoid
Cite this article:
Zhang J, Liu J, Shi Y, et al. Generation of patient-derived glioblastoma organoids: a comparative study of enzymatic digestion and mechanical fragmentation methods. Cell Organoid, 2024, https://doi.org/10.26599/CO.2024.9410004

229

Views

92

Downloads

1

Crossref

Altmetrics

Received: 02 February 2024
Revised: 29 April 2024
Accepted: 12 May 2024
Published: 08 November 2024
© The Author(s) 2024. Published by Tsinghua University Press

The articles published in this open access journal are distributed under the termsof the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution andreproduction in any medium, provided the original work is properly cited.

Return