AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (23 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access | Online First

The utiliity of FGF2 in the rapid and high-quality cultivation of hMenSCs and endometrial organoids

Min Wang1,§Hui Chen2,3,§Xinyue Feng4Peiyi Wu1Tongyan Jin1Xiao Huang2( )Jinqiu Feng2( )
Research Center of Neuroscience, College of Medicine, Jiaxing University, Jiaxing 314001, China
Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Department of Pediatrics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China
Dental Disease prevention and Treatment Center of Minhang District, Shanghai 201103, China
School of Stomatology, Wannan Medical College, Anhui 241002, China

§ Min Wang and Hui Chen contributed equally to this work.

Show Author Information

Highlights

• Establishment of a rapid and high-quality culture platform for hMenSCs & endometrial organoids

• Gene network regulated by FGF2 in hMenSCs & endometrial organoids

• The divergent effects of FGF2 on hMenSCs & endometrial organoids

Graphical Abstract

Our study explores the unexplored potential of FGF2 in boosting the regenerative capacities of hMenSCs and endometrial organoids. We've devised a robust cultivation method and revealed that FGF2 enhanced hMenSC & endometrial organoid regenerative properties via modulating genes related to growth, proliferation, metabolism, and signaling. FGF2’s dual effects on hMenSCs & organoids hold promise for regenerative medicine & endometrial diseases.

Abstract

Human menstrual blood-derived stem cells (hMenSCs) show promise in regenerative medicine and endometrial disease treatments. Organoids, three-dimensional (3D) tissue replicas, provide accurate disease models. Fibroblast growth factor 2 (FGF2), with established roles in stem cell functions, remains underexplored in its impact on hMenSCs and endometrial organoids. Our study aims to explore these unexplored effects of FGF2. In our study, we have developed a method for rapid and high-quality cultivation of MenSCs and organoids. Using this novel platform, we demonstrate that FGF2 alters hMenSC morphology, enhancing growth and proliferative, migratory, and anti-aging capabilities. RNA sequencing suggests this is linked to downregulated cell adhesion genes. FGF2 promotes proliferation via ribosomal biogenesis and ATP metabolism, possibly delaying senescence. In organoids, FGF2 reverses compaction and volume reduction, promoting growth and fibroblast release. q-PCR analysis shows FGF2 regulates genes related to stemness, proliferation, metabolism, and PI3K-AKT signaling, with distinct patterns in hMenSCs and organoids. This research advances regenerative medicine and reproductive biology by optimizing the cultivation of hMenSCs and organoids with FGF2 for potential therapeutic applications.

Electronic Supplementary Material

Download File(s)
CO-2024-0007_ESM.pdf (109.4 KB)

References

[1]

Zhou,T., Yuan, Z. N., Weng, J. Y., Pei, D. Q., Du, X., He, C., Lai, P. L. Challenges and advances in clinical applications of mesenchymal stromal cells. Journal of Hematology & Oncology, 2021, 14: 24. https://doi.org/10.1186/s13045-021-01037-x

[2]

Zheng, Sheng-Xia, Wang, J., Wang, Xue-Li, Ali, A., Wu, Li-Min, Liu, Yu-Sheng. Feasibility analysis of treating severe intrauterine adhesions by transplanting menstrual blood-derived stem cells. International Journal of Molecular Medicine, 2018, 41(4): 2201–2212. https://doi.org/10.3892/ijmm.2018.3415

[3]

Khoury, M., Alcayaga-Miranda, F., Illanes, S. E., Figueroa, F. E. The promising potential of menstrual stem cells for antenatal diagnosis and cell therapy. Frontiers in Immunology, 2014, 5: 205. https://doi.org/10.3389/fimmu.2014.00205

[4]

Wu, M. J., Wu, S. N., Tan, S. D., Xu, Q. X., Zhang, D. H., Sun, J. X., Yang, H. Y., Wang, C. C., Duan, T., Xu, Y. et al. VitroGel-loaded human MenSCs promote endometrial regeneration and fertility restoration. Frontiers in Bioengineering and Biotechnology, 2024, 11: 1310149. https://doi.org/10.3389/fbioe.2023.1310149

[5]

Jiang, Z., Hu, X. Y., Yu, H., Xu, Y. C., Wang, L. H., Chen, H., Chen, H. Q., Wu, R. R., Zhang, Z. C., Xiang, C. S. et al. Human endometrial stem cells confer enhanced myocardial salvage and regeneration by paracrine mechanisms. Journal of Cellular and Molecular Medicine, 2013, 17(10): 1247–1260. https://doi.org/10.1111/jcmm.12100

[6]

Wu, X. X., Luo, Y. Q., Chen, J. Y., Pan, R. L., Xiang, B. Y., Du, X. C., Xiang, L. X., Shao, J. Z., Xiang, C. Transplantation of human menstrual blood progenitor cells improves hyperglycemia by promoting endogenous progenitor differentiation in type 1 diabetic mice. Stem Cells and Development, 2014, 23(11): 1245–1257. https://doi.org/10.1089/scd.2013.0390

[7]

Chen, L. J., Zhang, C. F., Chen, L., Wang, X. J., Xiang, B. Y., Wu, X. X., Guo, Y., Mou, X. Z., Yuan, L., Chen, B. et al. Human menstrual blood-derived stem cells ameliorate liver fibrosis in mice by targeting hepatic stellate cells via paracrine mediators. Stem Cells Translational Medicine, 2017, 6(1): 272–284. https://doi.org/10.5966/sctm.2015-0265

[8]

Savchenko, E., Teku, G. N., Boza-Serrano, A., Russ, K., Berns, M., Deierbong, T., Lamas, N. J., Wichterle, H., Rothstein, J., Henderson, C. E., et al. FGF family members differentially regulate maturation and proliferation of stem cell-derived astrocytes. Scientific Reports, 2019, 9(1): 9610. https://doi.org/10.1038/s41598-019-46110-1

[9]

Schmidt, A., Ladage, D., Schinköthe, T., Klausmann, U., Ulrichs, C., Klinz, F. J., Brixius, K., Arnhold, S., Desai, B. R., Mehlhorn, U. et al. Basic fibroblast growth factor controls migration in human mesenchymal stem cells. Stem Cells, 2006, 24(7): 1750–1758. https://doi.org/10.1634/stemcells.2005-0191

[10]

Liu, K. Y., Yu, S. J., Ye, L., Gao, B. The regenerative potential of bFGF in dental pulp repair and regeneration. Frontiers in Pharmacology, 2021, 12: 680209. https://doi.org/10.3389/fphar.2021.680209

[11]

Georg Magalhães, C., Ploeger Mansueli, C., Manieri, T. M., Quintilio, W., Garbuio, A., de Jesus Marinho, J., de Moraes, J. Z., Tsuruta, L. R., Moro, A. M. Impaired proliferation and migration of HUVEC and melanoma cells by human anti-FGF2 mAbs derived from a murine hybridoma by guided selection. Bioengineered, 2023, 14(1): 2252667. https://doi.org/10.1080/21655979.2023.2252667

[12]

Howard, C., Murray, P. E., Namerow, K. N. Dental pulp stem cell migration. Journal of Endodontics, 2010, 36(12): 1963–1966. https://doi.org/10.1016/j.joen.2010.08.046

[13]

Turner, C., Watson, S., Akil, H. The fibroblast growth factor family: Neuromodulation of affective behavior. Neuron, 2012, 76(1): 160–174. https://doi.org/10.1016/j.neuron.2012.08.037

[14]

Diecke, S., Quiroga-Negreira, A., Redmer, T., Besser, D. FGF2 signaling in mouse embryonic fibroblasts is crucial for self-renewal of embryonic stem cells. Cells Tissues Organs, 2008, 188(1–2): 52–61. https://doi.org/10.1159/000121282

[15]

Chen, L. J., Qu, J. J., Xiang, C. The multi-functional roles of menstrual blood-derived stem cells in regenerative medicine. Stem Cell Research & Therapy, 2019, 10(1): 1. https://doi.org/10.1186/s13287-018-1105-9

[16]

Wu, J. Y., Huang, G. T. J., He, W. X., Wang, P., Tong, Z. C., Jia, Q., Dong, L. P., Niu, Z. Y., Ni, L. X. Basic fibroblast growth factor enhances stemness of human stem cells from the apical papilla. Journal of Endodontics, 2012, 38(5): 614–622. https://doi.org/10.1016/j.joen.2012.01.014

[17]

Han, X.-X., Jin, S. K., Yu, L. M., Wang, M., Hu, X. H., Hu, D. Y., Ren, J., Zhang, M., Huang, W., Deng, J. J. et al. Interferon-beta inhibits human glioma stem cell growth by modulating immune response and cell cycle related signaling pathways. Cell Regeneration, 2022, 11(1): 23. https://doi.org/10.1186/s13619-022-00123-w

[18]
Cao, Q., Li, L. Y., Zhao, Y. Q., Wang, C., Shi, Y. H., Tao, X., Cai, C. H., Han, X. X. PARPi decreased primary ovarian cancer organoid growth through early apoptosis and base excision repair pathway. Cell Transplantation, 2023 , 32: 09636897231187996. https://doi.org/10.1177/09636897231187996
[19]

Moskwa, N., Mahmood, A., Nelson, D. A., Altrieth, A. L., Forni, P. E., Larsen, M. Single-cell RNA sequencing reveals PDGFRα+ stromal cell subpopulations that promote proacinar cell differentiation in embryonic salivary gland organoids. Development, 2022, 149(6): dev200167. https://doi.org/10.1242/dev.200167

[20]

Huang, Y. C., Chen, W. C., Yu, C. L., Chang, T. K., I-Chin Wei, A., Chang, T. M., Liu, J. F., Wang, S. W. FGF2 drives osteosarcoma metastasis through activating FGFR1-4 receptor pathway-mediated ICAM-1 expression. Biochemical Pharmacology, 2023, 218: 115853. https://doi.org/10.1016/j.bcp.2023.115853

[21]

Chen, K. Y., Rao, Z. H., Dong, S. Y., Chen, Y. J., Wang, X. L., Luo, Y. D., Gong, F. H., Li, X. K. Roles of the fibroblast growth factor signal transduction system in tissue injury repair. Burns & Trauma, 2022, 10: tkac005. https://doi.org/10.1093/burnst/tkac005

[22]

Leung, K. T., Chan, K. Y. Y., Ng, P. C., Lau, T. K., Chiu, W. M., Tsang, K. S., Li, C. K., Kong, C. K. L., Li, K. R. The tetraspanin CD9 regulates migration, adhesion, and homing of human cord blood CD34+ hematopoietic stem and progenitor cells. Blood, 2011, 117(6): 1840–1850. https://doi.org/10.1182/blood-2010-04-281329

[23]

Hemler, M. E. Tetraspanin proteins promote multiple cancer stages. Nature Reviews Cancer, 2014, 14(1): 49–60. https://doi.org/10.1038/nrc3640

[24]

Levy, S., Shoham, T. The tetraspanin web modulates immune-signalling complexes. Nature Reviews Immunology, 2005, 5(2): 136–148. https://doi.org/10.1038/nri1548

[25]
Karagiannis, P., Takahashi, K., Saito, M., Yoshida, Y., Okita, K., Watanabe, A., Inoue, H., Yamashita, J. K., Todani, M., Nakagawa, M. et al. Induced pluripotent stem cells and their use in human models of disease and development. Physiological Reviews, 2019, 99(1): 79–114. https://doi.org/10.1152/physrev.00039.2017
[26]

Pan, G. J., Thomson, J. A. Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Research, 2007, 17(1): 42–49. https://doi.org/10.1038/sj.cr.7310125

[27]

Cheng, Y., Lin, K. H., Young, T. H., Cheng, N. C. The influence of fibroblast growth factor 2 on the senescence of human adipose-derived mesenchymal stem cells during long-term culture. Stem Cells Translational Medicine, 2020, 9(4): 518–530. https://doi.org/10.1002/sctm.19-0234

[28]

Coutu, D. L., Galipeau, J. Roles of FGF signaling in stem cell self-renewal, senescence and aging. Aging, 2011, 3(10): 920–933. https://doi.org/10.18632/aging.100369

[29]

Levenstein, M. E., Ludwig, T. E., Xu, R. H., Llanas, R. A., VanDenHeuvel-Kramer, K., Manning, D., Thomson, J. A. Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells, 2006, 24(3): 568–574. https://doi.org/10.1634/stemcells.2005-0247

[30]

Glazier, D. S. How metabolic rate relates to cell size. Biology, 2022, 11(8): 1106. https://doi.org/10.3390/biology11081106

[31]

Gong, J. X., Nirala, N. K., Chen, J. Z., Wang, F., Gu, P. Y., Wen, Q., Ip, Y. T., Xiang, Y. TrpA1 is a shear stress mechanosensing channel regulating intestinal stem cell proliferation in Drosophila. Science Advances, 2023, 9(21): eadc9660. https://doi.org/10.1126/sciadv.adc9660

[32]

Low, S., Barnes, J. L., Zammit, P. S., Beauchamp, J. R. Delta-like 4 activates Notch 3 to regulate self-renewal in skeletal muscle stem cells. Stem Cells, 2018, 36(3): 458–466. https://doi.org/10.1002/stem.2757

[33]

Lv, K. S., Gong, C. J., Antony, C., Han, X., Ren, J. G., Donaghy, R., Cheng, Y., Pellegrino, S., Warren, A. J., Paralkar, V. R. et al. HectD1 controls hematopoietic stem cell regeneration by coordinating ribosome assembly and protein synthesis. Cell Stem Cell, 2021, 28(7): 1275–1290.e9. https://doi.org/10.1016/j.stem.2021.02.008

[34]

Xue, M. L., Dong, L., Zhang, H. H., Li, Y. C., Qiu, K. Q., Zhao, Z. C., Gao, M., Han, L., Chan, A. K. N., Li, W. et al. METTL16 promotes liver cancer stem cell self-renewal via controlling ribosome biogenesis and mRNA translation. Journal of Hematology & Oncology, 2024, 17(1): 7. https://doi.org/10.1186/s13045-024-01526-9

[35]

Nourshargh, S., Alon, R. Leukocyte migration into inflamed tissues. Immunity, 2014, 41(5): 694–707. https://doi.org/10.1016/j.immuni.2014.10.008

[36]

Mishra, Y. G., Manavathi, B. Focal adhesion dynamics in cellular function and disease. Cellular Signalling, 2021, 85: 110046. https://doi.org/10.1016/j.cellsig.2021.110046

[37]

Mossahebi-Mohammadi, M., Quan, M. Y., Zhang, J. S., Li, X. K. FGF signaling pathway: A key regulator of stem cell pluripotency. Frontiers in Cell and Developmental Biology, 2020, 8: 79. https://doi.org/10.3389/fcell.2020.00079

[38]

Seo, B. J., Choi, J., La, H., Habib, O., Choi, Y., Hong, K., Do, J. T. Role of mitochondrial fission-related genes in mitochondrial morphology and energy metabolism in mouse embryonic stem cells. Redox Biology, 2020, 36: 101599. https://doi.org/10.1016/j.redox.2020.101599

[39]

Fumarola, C., Cretella, D., La Monica, S., Bonelli, M. A., Alfieri, R., Caffarra, C., Quaini, F., Madeddu, D., Falco, A., Cavazzoni, A. et al. Enhancement of the anti-tumor activity of FGFR1 inhibition in squamous cell lung cancer by targeting downstream signaling involved in glucose metabolism. Oncotarget, 2017, 8(54): 91841–91859. https://doi.org/10.18632/oncotarget.19279

[40]

Tobias, I. C., Isaac, R. R., Dierolf, J. G., Khazaee, R., Cumming, R. C., Betts, D. H. Metabolic plasticity during transition to naïve-like pluripotency in canine embryo-derived stem cells. Stem Cell Research, 2018, 30: 22–33. https://doi.org/10.1016/j.scr.2018.05.005

[41]
Muto, J., Fukuda, S., Watanabe, K., Dai, X.J., Tsuda, T., Kiyoi, T., Kameda, K., Kawakami, R., Mori, H., Shiraishi, K., et al. Highly concentrated trehalose induces prohealing senescence-like state in fibroblasts via CDKN1A/p21. Communications Biology, 2023, 6(1): 13. https://doi.org/10.1038/s42003-022-04408-3
Cell Organoid
Cite this article:
Wang M, Chen H, Feng X, et al. The utiliity of FGF2 in the rapid and high-quality cultivation of hMenSCs and endometrial organoids. Cell Organoid, 2024, https://doi.org/10.26599/CO.2024.9410007

277

Views

56

Downloads

1

Crossref

Altmetrics

Received: 15 March 2024
Revised: 05 July 2024
Accepted: 19 August 2024
Published: 22 October 2024
© The Author(s) 2024. Published by Tsinghua University Press

The articles published in this open access journal are distributed under the termsof the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution andreproduction in any medium, provided the original work is properly cited.

Return