AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access | Online First

The pros and cons of mechanical dissociation and enzymatic digestion in patient-derived organoid cultures for solid tumor

Jing Ren1,§Mengli Liu2,§Mingjie Rong3Xuan Zhang1Gang Wang1Yihan Liu1Haijun Li1( )Shichao Duan1( )
Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou 450003, China
Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
Shanghai Lisheng Biotech, Shanghai 200092, China

§ Jing Ren and Mengli Liu contributed equally to this work.

Show Author Information

Highlights

• Mechanical dissociation is a compelling choice in solid tumor-derived organoid cultures for personalized medicine approaches because of its capacity to preserve more tumor microenvironment.

• Enzymatic digestion can generate a more homogenous population of cell, thus guaranteeing the reproducibility and controllability required by large-scale drug screening.

• The choice of tissue dissociation method and process depends on different tissues and the requirements of the following study.

Graphical Abstract

This review compares mechanical dissociation and enzymatic digestion in deriving patient-derived organoids (PDOs) for cancer research. It examines their impact on organoid properties like stemness, heterogeneity, and long-term culture, and discusses their applications in drug screening and cancer modeling. The choice of method depends on tissue type and study requirements, with technological advances enhancing organoid production efficiency.

Abstract

Patient-derived organoids (PDOs) are revolutionizing cancer research, serving as invaluable models for tumor biology and therapeutic screening. The fidelity and applicability of these organoids are fundamentally shaped by the tissue dissociation techniques employed, namely mechanical dissociation and enzymatic digestion. This comprehensive review delves into the nuances of these two methods, scrutinizing their effects on solid tumor organoid properties, including stemness, heterogeneity, long-term culturing. We discuss the advantages and limitations of each technique, with a focus on their impact on tumor microenvironment preservation, their application in drug screening and cancer modeling. Moreover, we examine how recent technological breakthroughs have bolstered the efficiency and scalability of organoid production through these methods. Our analysis is designed to assist researchers in choosing the optimal tissue dissociation strategy for their research objectives and to fuel the evolution of organoid-based cancer models.

References

[1]

Hanahan, D., Weinberg, R. Hallmarks of cancer: The next generation. Cell, 2011, 144(5): 646–674. https://doi.org/10.1016/j.cell.2011.02.013

[2]

Najafi, M., Majidpoor, J., Toolee, H., Mortezaee, K. The current knowledge concerning solid cancer and therapy. Journal of Biochemical and Molecular Toxicology, 2021, 35(11): e22900. https://doi.org/10.1002/jbt.22900

[3]
Clara-Trujillo, S., Gallego Ferrer, G., Gómez Ribelles, J. L. In vitro modeling of non-solid tumors: How far can tissue engineering go? International Journal of Molecular Sciences, 2020 , 21(16): 5747. https://doi.org/10.3390/ijms21165747
[4]
Tutty, M. A., Holmes, S., Prina-Mello, A. Cancer cell culture: The basics and two-dimensional cultures. In: Cancer Cell Culture. New York: Humana, 2023: 3-40. https://doi.org/10.1007/978-1-0716-3056-3_1
[5]

Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S. B., Diaz, L. A. Jr, Kinzler, K. W. Cancer genome landscapes. Science, 2013, 339(6127): 1546–1558. https://doi.org/10.1126/science.1235122

[6]

Sato, T., Clevers, H. Growing self-organizing mini-guts from a single intestinal stem cell: Mechanism and applications. Science, 2013, 340(6137): 1190–1194. https://doi.org/10.1126/science.1234852

[7]

Li, Y., Gao, X. Y., Ni, C., Zhao, B., Cheng, X. H. The application of patient-derived organoid in the research of lung cancer. Cellular Oncology, 2023, 46(3): 503–519. https://doi.org/10.1007/s13402-023-00771-3

[8]

Drost, J., Karthaus, W. R., Gao, D., Driehuis, E., Sawyers, C. L., Chen, Y., Clevers, H. Organoid culture systems for prostate epithelial and cancer tissue. Nature Protocols, 2016, 11(2): 347–358. https://doi.org/10.1038/nprot.2016.006

[9]

Choi, W., Kim, Y.-H., Woo, S. M., Yu, Y., Lee, M. R., Lee, W. J., Chun, J. W., Sim, S. H., Chae, H., Shim, H., et al. Establishment of patient-derived organoids using ascitic or pleural fluid from cancer patients. Cancer Research and Treatment, 2023, 55(4): 1077–1086. https://doi.org/10.4143/crt.2022.1630

[10]

Thorel, L., Perréard, M., Florent, R., Divoux, J., Coffy, S., Vincent, A., Gaggioli, C., Guasch, G., Gidrol, X., Weiswald, L. B. et al. Patient-derived tumor organoids: A new avenue for preclinical research and precision medicine in oncology. Experimental & Molecular Medicine, 2024, 56: 1531–1551. https://doi.org/10.1038/s12276-024-01272-5

[11]

Xiang, D. X., He, A. N., Zhou, R., Wang, Y. G., Xiao, X. Y., Gong, T., Kang, W. Y., Lin, X. L., Wang, X. C., Consortium, P. B D. et al. Building consensus on the application of organoid-based drug sensitivity testing in cancer precision medicine and drug development. Theranostics, 2024, 14(8): 3300–3316. https://doi.org/10.7150/thno.96027

[12]

Xu, H. X., Lyu, X. D., Yi, M., Zhao, W. H., Song, Y. P., Wu, K. M. Organoid technology and applications in cancer research. Journal of Hematology & Oncology, 2018, 11(1): 116. https://doi.org/10.1186/s13045-018-0662-9

[13]

Vlachogiannis, G., Hedayat, S., Vatsiou, A., Jamin, Y., Fernández-Mateos, J., Khan, K., Lampis, A., Eason, K., Huntingford, I., Burke, R. et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science, 2018, 359(6378): 920–926. https://doi.org/10.1126/science.aao2774

[14]

Wang, J., Chen, C., Wang, L., Xie, M. J., Ge, X. Y., Wu, S. F., He, Y., Mou, X. Z., Ye, C. Y., Sun, Y. Patient-derived tumor organoids: New progress and opportunities to facilitate precision cancer immunotherapy. Frontiers in Oncology, 2022, 12: 872531. https://doi.org/10.3389/fonc.2022.872531

[15]

Cunningham, R. E. Tissue disaggregation. Methods in Molecular Biology, 2010, 588: 327–330. https://doi.org/10.1007/978-1-59745-324-0_32

[16]

Bartfeld, S., Bayram, T., van de Wetering, M., Huch, M., Begthel, H., Kujala, P., Vries, R., Peters, P. J., Clevers, H. InVitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology, 2015, 148(1): 126–136.e6. https://doi.org/10.1053/j.gastro.2014.09.042

[17]

Lancaster, M. A., Knoblich, J. A. Generation of cerebral organoids from human pluripotent stem cells. Nature Protocols, 2014, 9(10): 2329–2340. https://doi.org/10.1038/nprot.2014.158

[18]

Goldberg, S. Mechanical/physical methods of cell disruption and tissue homogenization. Methods in Molecular Biology, 2021, 2261: 563–585. https://doi.org/10.1007/978-1-0716-1186-9_36

[19]

Welch, E. C., Yu, H., Barabino, G., Tapinos, N., Tripathi, A. Electric-field facilitated rapid and efficient dissociation of tissues Into viable single cells. Scientific Reports, 2022, 12: 10728. https://doi.org/10.1038/s41598-022-13068-6

[20]

Lombardo, J. A., Aliaghaei, M., Nguyen, Q. H., Kessenbrock, K., Haun, J. B. Microfluidic platform accelerates tissue processing into single cells for molecular analysis and primary culture models. Nature Communications, 2021, 12: 2858. https://doi.org/10.1038/s41467-021-23238-1

[21]

Aliaghaei, M., Haun, J. B. Optimization of mechanical tissue dissociation using an integrated microfluidic device for improved generation of single cells following digestion. Frontiers in Bioengineering and Biotechnology, 2022, 10: 841046. https://doi.org/10.3389/fbioe.2022.841046

[22]

Amosu, M., Gregory, A. J., Murtagh, J. D., Pavin, N., Meyers, C. T., Grano de Oro Fernandez, J., Moore, K., Maisel, K. Mechanical dissociation of tissues for single cell analysis using a motorized device. Journal of Visualized Experiments: JoVE, 2023(201): ((201)). https://doi.org/10.3791/65866

[23]

Garaud, S., Gu-Trantien, C., Lodewyckx, J. N., Boisson, A., De Silva, P., Buisseret, L., Migliori, E., Libin, M., Naveaux, C., Duvillier, H. et al. A simple and rapid protocol to non-enzymatically dissociate fresh human tissues for the analysis of infiltrating lymphocytes. Journal of Visualized Experiments: JoVE, 2014(94): 52392. https://doi.org/10.3791/52392-v

[24]

Reichard, A., Asosingh, K. Best practices for preparing a single cell suspension from solid tissues for flow cytometry. Cytometry Part A, 2019, 95(2): 219–226. https://doi.org/10.1002/cyto.a.23690

[25]

Pompili, S., Latella, G., Gaudio, E., Sferra, R., Vetuschi, A. The charming world of the extracellular matrix: A dynamic and protective network of the intestinal wall. Frontiers in Medicine, 2021, 8: 610189. https://doi.org/10.3389/fmed.2021.610189

[26]

Polak, R., Zhang, E. T., Kuo, C. J. Cancer organoids 2.0: Modelling the complexity of the tumour immune microenvironment. Nature Reviews Cancer, 2024, 24(8): 523–539. https://doi.org/10.1038/s41568-024-00706-6

[27]

Wang, M., Chen, H., Feng, X. Y., Wu, P. Y., Jin, T. Y., Huang, X., Feng, J. Q. The utiliity of FGF2 in the rapid and high-quality cultivation of hMenSCs and endometrial organoids. Cell Organoid, 2024, 1: 9410007. https://doi.org/10.26599/co.2024.9410007

[28]
Cao, Q., Li, L. Y., Zhao, Y. Q., Wang, C., Shi, Y. H., Tao, X., Cai, C. H., Han, X. X. PARPi decreased primary ovarian cancer organoid growth through early apoptosis and base excision repair pathway. Cell Transplantation, 2023 , 32: 9636897231187996. https://doi.org/10.1177/09636897231187996
[29]

Jacob, F., Salinas, R. D., Zhang, D. Y., Nguyen, P. T. T., Schnoll, J. G., Wong, S. Z. H., Thokala, R., Sheikh, S., Saxena, D., Prokop, S. et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell, 2020, 180(1): 188–204.e22. https://doi.org/10.1016/j.cell.2019.11.036

[30]

Olsen, J. V., Ong, S. E., Mann, M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Molecular & Cellular Proteomics, 2004, 3(6): 608–614. https://doi.org/10.1074/mcp.T400003-MCP200

[31]

Mansuri, M. S., Bathla, S., Lam, T. T., Nairn, A. C., Williams, K. R. Optimal conditions for carrying out trypsin digestions on complex proteomes: From bulk samples to single cells. Journal of Proteomics, 2024, 297: 105109. https://doi.org/10.1016/j.jprot.2024.105109

[32]

Miersch, C., Stange, K., Röntgen, M. Effects of trypsinization and of a combined trypsin, collagenase, and DNase digestion on liberation and in vitro function of satellite cells isolated from juvenile porcine muscles. In Vitro Cellular & Developmental Biology - Animal, 2018, 54(6): 406–412. https://doi.org/10.1007/s11626-018-0263-5

[33]

Burja, B., Paul, D., Tastanova, A., Edalat, S. G., Gerber, R., Houtman, M., Elhai, M., Bürki, K., Staeger, R., Restivo, G. et al. An optimized tissue dissociation protocol for single-cell RNA sequencing analysis of fresh and cultured human skin biopsies. Frontiers in Cell and Developmental Biology, 2022, 10: 872688. https://doi.org/10.3389/fcell.2022.872688

[34]

Zeng, W. L., Song, Y. Q., Wang, R. Z., He, R., Wang, T. L. Neutrophil elastase: From mechanisms to therapeutic potential. Journal of Pharmaceutical Analysis, 2023, 13(4): 355–366. https://doi.org/10.1016/j.jpha.2022.12.003

[35]

Döring, G. The role of neutrophil elastase in chronic inflammation. American Journal of Respiratory and Critical Care Medicine, 1994, 150(6_pt_2): S114–S117. https://doi.org/10.1164/ajrccm/150.6_Pt_2.S114

[36]

Heinz, A. Elastases and elastokines: Elastin degradation and its significance in health and disease. Critical Reviews in Biochemistry and Molecular Biology, 2020, 55(3): 252–273. https://doi.org/10.1080/10409238.2020.1768208

[37]

Buhren, B. A., Schrumpf, H., Gorges, K., Reiners, O., Bölke, E., Fischer, J. W., Homey, B., Gerber, P. A. Dose- and time-dependent effects of hyaluronidase on structural cells and the extracellular matrix of the skin. European Journal of Medical Research, 2020, 25(1): 60. https://doi.org/10.1186/s40001-020-00460-z

[38]

Welch, E. C., Yu, H., Tripathi, A. Optimization of a clinically relevant chemical-mechanical tissue dissociation workflow for single-cell analysis. Cellular and Molecular Bioengineering, 2021, 14(3): 241–258. https://doi.org/10.1007/s12195-021-00667-y

[39]

Fisher, M. J., Jay, R. E., Haugh, L. D., Sander, E. G. Papain inhibition by serum. Journal of Applied Physiology, 1976, 41(2): 174–179. https://doi.org/10.1152/jappl.1976.41.2.174

[40]

Kostiuchenko, O., Kravchenko, N., Markus, J., Burleigh, S., Fedkiv, O., Cao, L., Letasiova, S., Skibo, G., Hållenius, F. F., Prykhodko, O. Effects of proteases from pineapple and papaya on protein digestive capacity and gut microbiota in healthy C57BL/6 mice and dose-manner response on mucosal permeability in human reconstructed intestinal 3D tissue model. Metabolites, 2022, 12(11): 1027. https://doi.org/10.3390/metabo12111027

[41]

Brewer, G. J., Torricelli, J. R. Isolation and culture of adult neurons and neurospheres. Nature Protocols, 2007, 2(6): 1490–1498. https://doi.org/10.1038/nprot.2007.207

[42]

Nowak-Terpiłowska, A., Śledziński, P., Zeyland, J. Impact of cell harvesting methods on detection of cell surface proteins and apoptotic markers. Brazilian Journal of Medical and Biological Research, 2021, 54(2): e10197. https://doi.org/10.1590/1414-431x202010197

[43]

Rookmaaker, M. B., Schutgens, F., Verhaar, M. C., Clevers, H. Development and application of human adult stem or progenitor cell organoids. Nature Reviews Nephrology, 2015, 11(9): 546–554. https://doi.org/10.1038/nrneph.2015.118

[44]

Beumer, J., Clevers, H. Hallmarks of stemness in mammalian tissues. Cell Stem Cell, 2024, 31(1): 7–24. https://doi.org/10.1016/j.stem.2023.12.006

[45]

Vining, K. H., Mooney, D. J. Mechanical forces direct stem cell behaviour in development and regeneration. Nature Reviews Molecular Cell Biology, 2017, 18(12): 728–742. https://doi.org/10.1038/nrm.2017.108

[46]

Kardorff, M., Mahler, H. C., Huwyler, J., Sorret, L. Comparison of cell viability methods for human mesenchymal/stromal stem cells and human A549 lung carcinoma cells after freeze-thaw stress. Journal of Pharmacological and Toxicological Methods, 2023, 124: 107474. https://doi.org/10.1016/j.vascn.2023.107474

[47]

Ma, D., Luo, Q., Song, G. B. Matrix stiffening facilitates stemness of liver cancer stem cells by YAP activation and BMF inhibition. Biomaterials Advances, 2024, 163: 213936. https://doi.org/10.1016/j.bioadv.2024.213936

[48]

Li, C., Qiu, S., Liu, X. H., Guo, F. Z., Zhai, J. T., Li, Z. J., Deng, L. H., Ge, L. M., Qian, H. L., Yang, L. et al. Extracellular matrix-derived mechanical force governs breast cancer cell stemness and quiescence transition through integrin-DDR signaling. Signal Transduction and Targeted Therapy, 2023, 8: 247. https://doi.org/10.1038/s41392-023-01453-0

[49]

Meng, F. L., Shen, C. C., Yang, L., Ni, C., Huang, J. Y., Lin, K. J., Cao, Z. X., Xu, S. C., Cui, W. L., Wang, X. X. et al. Mechanical stretching boosts expansion and regeneration of intestinal organoids through fueling stem cell self-renewal. Cell Regeneration, 2022, 11(1): 39. https://doi.org/10.1186/s13619-022-00137-4

[50]

Sato, T., van Es, J. H., Snippert, H. J., Stange, D. E., Vries, R. G., van den Born, M., Barker, N., Shroyer, N. F., van de Wetering, M., Clevers, H. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 2011, 469(7330): 415–418. https://doi.org/10.1038/nature09637

[51]

Kim, J. E., Fei, L. J., Yin, W. C., Coquenlorge, S., Rao-Bhatia, A., Zhang, X. Y., Shi, S. S. W., Lee, J. H., Hahn, N. A., Rizvi, W. et al. Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches. Nature Communications, 2020, 11: 334. https://doi.org/10.1038/s41467-019-14058-5

[52]

Xu, H. X., Jiao, D. C., Liu, A. G., Wu, K. M. Tumor organoids: Applications in cancer modeling and potentials in precision medicine. Journal of Hematology & Oncology, 2022, 15(1): 58. https://doi.org/10.1186/s13045-022-01278-4

[53]

Marx, V. Closing in on cancer heterogeneity with organoids. Nature Methods, 2024, 21(4): 551–554. https://doi.org/10.1038/s41592-024-02231-8

[54]

Soteriou, D., Kubánková, M., Schweitzer, C., López-Posadas, R., Pradhan, R., Thoma, O. M., Györfi, A. H., Matei, A. E., Waldner, M., Distler, J. H. W. et al. Rapid single-cell physical phenotyping of mechanically dissociated tissue biopsies. Nature Biomedical Engineering, 2023, 7(11): 1392–1403. https://doi.org/10.1038/s41551-023-01015-3

[55]

Hirokawa, Y., Clarke, J., Palmieri, M., Tan, T., Mouradov, D., Li, S., Lin, C., Li, F. Q., Luo, H. J., Wu, K. et al. Low-viscosity matrix suspension culture enables scalable analysis of patient-derived organoids and tumoroids from the large intestine. Communications Biology, 2021, 4: 1067. https://doi.org/10.1038/s42003-021-02607-y

[56]

Lai, T. Y., Cao, J., Ou-Yang, P., Tsai, C. Y., Lin, C. W., Chen, C. C., Tsai, M. K., Lee, C. Y. Different methods of detaching adherent cells and their effects on the cell surface expression of Fas receptor and Fas ligand. Scientific Reports, 2022, 12: 5713. https://doi.org/10.1038/s41598-022-09605-y

[57]

Pohl, S. T., Prada, M. L., Espinet, E., Jurkowska, R. Practical considerations for complex tissue dissociation for single-cell transcriptomics. Methods in Molecular Biology, 2023, 2584: 371–387. https://doi.org/10.1007/978-1-0716-2756-3_19

[58]

Dekkers, J. F., van Vliet, E. J., Sachs, N., Rosenbluth, J. M., Kopper, O., Rebel, H. G., Wehrens, E. J., Piani, C., Visvader, J. E., Verissimo, C. S. et al. Long-term culture, genetic manipulation and xenotransplantation of human normal and breast cancer organoids. Nature Protocols, 2021, 16(4): 1936–1965. https://doi.org/10.1038/s41596-020-00474-1

[59]

Fumagalli, A., Drost, J., Suijkerbuijk, S. J. E., van Boxtel, R., de Ligt, J., Offerhaus, G. J., Begthel, H., Beerling, E., Tan, E. H., Sansom, O. J. et al. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(12): E2357–E2364. https://doi.org/10.1073/pnas.1701219114

[60]

Hu, H. L., Gehart, H., Artegiani, B., LÖpez-Iglesias, C., Dekkers, F., Basak, O., van Es, J., Chuva de Sousa Lopes, S. M., Begthel, H., Korving, J. et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell, 2018, 175(6): 1591–1606.e19. https://doi.org/10.1016/j.cell.2018.11.013

[61]

Driehuis, E., Kretzschmar, K., Clevers, H. Establishment of patient-derived cancer organoids for drug-screening applications. Nature Protocols, 2020, 15(10): 3380–3409. https://doi.org/10.1038/s41596-020-0379-4

[62]

Yang, R. X., Yu, Y. Y. Patient-derived organoids in translational oncology and drug screening. Cancer Letters, 2023, 562: 216180. https://doi.org/10.1016/j.canlet.2023.216180

[63]

Yoon, S., You, D. K., Jeong, U., Lee, M. N., Kim, E., Jeon, T. J., Kim, S. M. Microfluidics in high-throughput drug screening: Organ-on-a-chip and C. elegans-based innovations. Biosensors, 2024, 14(1): 55. https://doi.org/10.3390/bios14010055

[64]

Shi, Y. H., Liu, J. P., Li, L. Y., Wang, C., Zhang, J., Rong, M. J., Rao, Y. M., Zhou, X. B., Sun, D., Chen, J. et al. Patient-derived skin tumor organoids with immune cells respond to metformin. Cell Organoid, 2024, 1: 9410001. https://doi.org/10.26599/co.2024.9410001

[65]

Autengruber, A., Gereke, M., Hansen, G., Hennig, C., Bruder, D. Impact of enzymatic tissue disintegration on the level of surface molecule expression and immune cell function. European Journal of Microbiology and Immunology, 2012, 2(2): 112–120. https://doi.org/10.1556/eujmi.2.2012.2.3

[66]

Verissimo, C. S., Overmeer, R. M., Ponsioen, B., Drost, J., Mertens, S., Verlaan-Klink, I., Gerwen, B. V., van der Ven, M., Wetering, M. V., Egan, D. A. et al. Targeting mutant RAS in patient-derived colorectal cancer organoids by combinatorial drug screening. eLife, 2016, 5: e18489. https://doi.org/10.7554/eLife.18489

[67]

Peng, K., Zhang, F. F., Wang, Y. C., Sahgal, P., Li, T. X., Zhou, J., Liang, X. Y., Zhang, Y. X., Sethi, N., Liu, T. S. et al. Development of combination strategies for focal adhesion kinase inhibition in diffuse gastric cancer. Clinical Cancer Research, 2023, 29(1): 197–208. https://doi.org/10.1158/1078-0432.ccr-22-1609

[68]

Neal, J. T., Li, X. N., Zhu, J. J., Giangarra, V., Grzeskowiak, C. L., Ju, J. H., Liu, I. H., Chiou, S. H., Salahudeen, A. A., Smith, A. R. et al. Organoid modeling of the tumor immune microenvironment. Cell, 2018, 175(7): 1972–1988.e16. https://doi.org/10.1016/j.cell.2018.11.021

[69]

Gu, Z. R., Wu, Q. Y., Shang, B. Q., Zhang, K. T., Zhang, W. Organoid co-culture models of the tumor microenvironment promote precision medicine. Cancer Innovation, 2024, 3(1): e101. https://doi.org/10.1002/cai2.101

[70]

Zhao, Y. Q., Wang, C., Deng, W., Li, L. Y., Liu, J. P., Shi, Y. H., Tao, X., Zhang, J., Cao, Q., Cai, C. H. et al. Patient-derived ovarian cancer organoid carries immune microenvironment and blood vessel keeping high response to cisplatin. MedComm, 2024, 5(9): e697. https://doi.org/10.1002/mco2.697

[71]

Drost, J., Clevers, H. Organoids in cancer research. Nature Review Cancer, 2018, 18(7): 407–418. https://doi.org/10.1038/s41568-018-0007-6

[72]

Merenda, A., Fenderico, N., Maurice, M. M. Wnt signaling in 3D: Recent advances in the applications of intestinal organoids. Trends in Cell Biology, 2020, 30(1): 60–73. https://doi.org/10.1016/j.tcb.2019.10.003

[73]

Lo, Y. H., Karlsson, K., Kuo, C. J. Applications of organoids for cancer biology and precision medicine. Nature Cancer, 2020, 1(8): 761–773. https://doi.org/10.1038/s43018-020-0102-y

[74]

Magré, L., Verstegen, M. M. A., Buschow, S., van der Laan, L. J. W., Peppelenbosch, M., Desai, J. Emerging organoid-immune co-culture models for cancer research: From oncoimmunology to personalized immunotherapies. Journal for Immunotherapy of Cancer, 2023, 11(5): e006290. https://doi.org/10.1136/jitc-2022-006290

[75]

Yuan, J., Li, X. Y., Yu, S. J. Cancer organoid co-culture model system: Novel approach to guide precision medicine. Frontiers in Immunology, 2023, 13: 1061388. https://doi.org/10.3389/fimmu.2022.1061388

[76]

Dijkstra, K. K., Cattaneo, C. M., Weeber, F., Chalabi, M., van de Haar, J., Fanchi, L. F., Slagter, M., van der Velden, D. L., Kaing, S., Kelderman, S. et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell, 2018, 174(6): 1586–1598.e12. https://doi.org/10.1016/j.cell.2018.07.009

[77]

Cao, U. M. N., Zhang, Y. L., Chen, J. L., Sayson, D., Pillai, S., Tran, S. D. Microfluidic organ-on-A-chip: A guide to biomaterial choice and fabrication. International Journal of Molecular Sciences, 2023, 24(4): 3232. https://doi.org/10.3390/ijms24043232

[78]

Seidlitz, T., Koo, B. K., Stange, D. E. Gastric organoids—An in vitro model system for the study of gastric development and road to personalized medicine. Cell Death & Differentiation, 2021, 28(1): 68–83. https://doi.org/10.1038/s41418-020-00662-2

[79]

Hu, Z. W., Chen, Y. M., Gao, M., Chi, X. P., He, Y., Zhang, C. G., Yang, Y., Li, Y. M., Lv, Y., Huang, Y. et al. Novel strategy for primary epithelial cell isolation: Combination of hyaluronidase and collagenase I. Cell Proliferation, 2023, 56(1): e13320. https://doi.org/10.1111/cpr.13320

[80]

Tuveson, D., Clevers, H. Cancer modeling meets human organoid technology. Science, 2019, 364(6444): 952–955. https://doi.org/10.1126/science.aaw6985

[81]

Sato, T., Vries, R. G., Snippert, H. J., van de Wetering, M., Barker, N., Stange, D. E., van Es, J. H., Abo, A., Kujala, P., Peters, P. J. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459(7244): 262–265. https://doi.org/10.1038/nature07935

[82]
Dmitrieva-Posocco, O., Wong, A. C., Lundgren, P., Golos, A. M., Descamps, H. C., Dohnalová, L., Cramer, Z., Tian, Y. H., Yueh, B., Eskiocak, O. et al. β-Hydroxybutyrate suppresses colorectal cancer. Nature, 2022 , 605(7908): 160–165. https://doi.org/10.1038/s41586-022-04649-6
[83]

Barker, N., Huch, M., Kujala, P., van de Wetering, M., Snippert, H. J., van Es, J. H., Sato, T., Stange, D. E., Begthel, H., van den Born, M. et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell, 2010, 6(1): 25–36. https://doi.org/10.1016/j.stem.2009.11.013

[84]

Ross, A. D. B., Perrone, F., Elmentaite, R., Teichmann, S. A., Zilbauer, M. Obtaining purified human intestinal epithelia for single-cell analysis and organoid culture. STAR Protocols, 2021, 2(2): 100597. https://doi.org/10.1016/j.xpro.2021.100597

[85]

Marinucci, M., Ercan, C. E., Taha-Mehlitz, S., Fourie, L., Panebianco, F., Bianco, G., Gallon, J., Staubli, S., Soysal, S. D., Zettl, A. et al. Standardizing patient-derived organoid generation workflow to avoid microbial contamination from colorectal cancer tissues. Frontiers in Oncology, 2022, 11: 781833. https://doi.org/10.3389/fonc.2021.781833

[86]

Roper, J., Tammela, T., Cetinbas, N., Akkad, A., Roghanian, A., Rickelt, S., Almeqdadi, M., Wu, K., Oberli, M., Sánchez-Rivera, F. J. et al. Abstract B38: in vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Cancer Research, 2018, 78(10_Supplement): B38. https://doi.org/10.1158/1538-7445.MOUSEMODELS17-B38

[87]

Ganesh, K., Wu, C., O’Rourke, K. P., Szeglin, B. C., Zheng, Y. Y., Sauvé, C. E G., Adileh, M., Wasserman, I., Marco, M. R., Kim, A. S. et al. A rectal cancer organoid platform to study individual responses to chemoradiation. Nature Medicine, 2019, 25(10): 1607–1614. https://doi.org/10.1038/s41591-019-0584-2

[88]

Broutier, L., Andersson-Rolf, A., Hindley, C. J., Boj, S. F., Clevers, H., Koo, B. K., Huch, M. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nature Protocols, 2016, 11(9): 1724–1743. https://doi.org/10.1038/nprot.2016.097

[89]

Narayan, N. J. C., Requena, D., Lalazar, G., Ramos-Espiritu, L., Ng, D., Levin, S., Shebl, B., Wang, R. S., Hammond, W. J., Saltsman, J. A. III et al. Human liver organoids for disease modeling of fibrolamellar carcinoma. Stem Cell Reports, 2022, 17(8): 1874–1888. https://doi.org/10.1016/j.stemcr.2022.06.003

[90]

Broutier, L., Mastrogiovanni, G., Verstegen, M. M., Francies, H. E., Gavarró, L. M., Bradshaw, C. R., Allen, G. E., Arnes-Benito, R., Sidorova, O., Gaspersz, M. P. et al. Human primary liver cancer–derived organoid cultures for disease modeling and drug screening. Nature Medicine, 2017, 23(12): 1424–1435. https://doi.org/10.1038/nm.4438

[91]

Huch, M., Gehart, H., Van Boxtel, R., Hamer, K., Blokzijl, F., Verstegen, M. A., Ellis, E., Van Wenum, M., Fuchs, S., De Ligt, J. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell, 2015, 160(1–2): 299–312. https://doi.org/10.1016/j.cell.2014.11.050

[92]
Boj, S. F., Hwang, C.-I., Baker, L. A., Chio, I. I. C., Engle, D. D., Corbo, V., Jager, M., Ponz-Sarvise, M., Tiriac, H., Spector, M. S., et al., Organoid models of human and mouse ductal pancreatic cancer. Cell, 2015 , 160(1–2): 324–338. https://doi.org/10.1016/j.cell.2014.12.021
[93]

Vaes, R. D. W., van Dijk, D. P. J., Welbers, T. T. J., Blok, M. J., Aberle, M. R., Heij, L., Boj, S. F., Olde Damink, S. W. M., Rensen, S. S. Generation and initial characterization of novel tumour organoid models to study human pancreatic cancer-induced cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11(6): 1509–1524. https://doi.org/10.1002/jcsm.12627

[94]

Beelen, N. A., Aberle, M. R., Bruno, V., Olde Damink, S. W. M., Bos, G. M. J., Rensen, S. S., Wieten, L. Antibody-dependent cellular cytotoxicity-inducing antibodies enhance the natural killer cell anti-cancer response against patient-derived pancreatic cancer organoids. Frontiers in Immunology, 2023, 14: 1133796. https://doi.org/10.3389/fimmu.2023.1133796

[95]

Raghavan, S., Winter, P. S., Navia, A. W., Williams, H. L., DenAdel, A., Lowder, K. E., Galvez-Reyes, J., Kalekar, R. L., Mulugeta, N., Kapner, K. S. et al. Microenvironment drives cell state, plasticity, and drug response in pancreatic cancer. Cell, 2021, 184(25): 6119–6137.e26. https://doi.org/10.1016/j.cell.2021.11.017

[96]

Zeng, Z. P., Huang, B., Parvez, R. K., Li, Y. D., Chen, J., Vonk, A. C., Thornton, M. E., Patel, T., Rutledge, E. A., Kim, A. D. et al. Generation of patterned kidney organoids that recapitulate the adult kidney collecting duct system from expandable ureteric bud progenitors. Nature Communications, 2021, 12: 3641. https://doi.org/10.1038/s41467-021-23911-5

[97]

Calandrini, C., Schutgens, F., Oka, R., Margaritis, T., Candelli, T., Mathijsen, L., Ammerlaan, C., van Ineveld, R. L., Derakhshan, S., de Haan, S. et al. An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity. Nature Communications, 2020, 11: 1310. https://doi.org/10.1038/s41467-020-15155-6

[98]

Schutgens, F., Rookmaaker, M. B., Margaritis, T., Rios, A., Ammerlaan, C., Jansen, J., Gijzen, L., Vormann, M., Vonk, A., Viveen, M. et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nature Biotechnology, 2019, 37(3): 303–313. https://doi.org/10.1038/s41587-019-0048-8

[99]

Li, Z. C., Xu, H. B., Yu, L., Wang, J., Meng, Q., Mei, H. B., Cai, Z. M., Chen, W., Huang, W. R. Patient-derived renal cell carcinoma organoids for personalized cancer therapy. Clinical and Translational Medicine, 2022, 12(7): e970. https://doi.org/10.1002/ctm2.970

[100]

Nikolić, M. Z., Caritg, O., Jeng, Q., Johnson, J. A., Sun, D., Howell, K. J., Brady, J. L., Laresgoiti, U., Allen, G., Butler, R. et al. Human embryonic lung epithelial tips are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids. eLife, 2017, 6: e26575. https://doi.org/10.7554/eLife.26575

[101]

Zacharias, W. J., Frank, D. B., Zepp, J. A., Morley, M. P., Alkhaleel, F. A., Kong, J., Zhou, S., Cantu, E., Morrisey, E. E. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature, 2018, 555(7695): 251–255. https://doi.org/10.1038/nature25786

[102]

Kim, M., Mun, H., Sung, C. O., Cho, E. J., Jeon, H. J., Chun, S. M., Jung, D. J., Shin, T. H., Jeong, G. S., Kim, D. K. et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nature Communications, 2019, 10: 3991. https://doi.org/10.1038/s41467-019-11867-6

[103]

Li, Z. C., Qian, Y. H., Li, W. J., Liu, L. S., Yu, L., Liu, X., Wu, G. D., Wang, Y. Y., Luo, W. B., Fang, F. Y. et al. Human lung adenocarcinoma-derived organoid models for drug screening. iScience, 2020, 23(8): 101411. https://doi.org/10.1016/j.isci.2020.101411

[104]

Wang, Y., Jiang, T., Qin, Z., Jiang, J., Wang, Q., Yang, S., Rivard, C., Gao, G., Ng, T. L., Tu, M. M. et al. HER2 exon 20 insertions in non-small-cell lung cancer are sensitive to the irreversible pan-HER receptor tyrosine kinase inhibitor pyrotinib. Annals of Oncology, 2019, 30(3): 447–455. https://doi.org/10.1093/annonc/mdy542

[105]

Lago, C., Federico, A., Leva, G., Mack, N. L., Schwalm, B., Ballabio, C., Gianesello, M., Abballe, L., Giovannoni, I., Reddel, S. et al. Patient- and xenograft-derived organoids recapitulate pediatric brain tumor features and patient treatments. EMBO Molecular Medicine, 2023, 15(12): e18199. https://doi.org/10.15252/emmm.202318199

[106]

Hubert, C. G., Rivera, M., Spangler, L. C., Wu, Q. L., Mack, S. C., Prager, B. C., Couce, M., McLendon, R. E., Sloan, A. E., Rich, J. N. A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo. Cancer Research, 2016, 76(8): 2465–2477. https://doi.org/10.1158/0008-5472.can-15-2402

[107]

Shakya, S., Gromovsky, A. D., Hale, J. S., Knudsen, A. M., Prager, B., Wallace, L. C., Penalva, L. O. F., Brown, H. A., Kristensen, B. W., Rich, J. N. et al. Altered lipid metabolism marks glioblastoma stem and non-stem cells in separate tumor niches. Acta Neuropathologica Communications, 2021, 9(1): 101. https://doi.org/10.1186/s40478-021-01205-7

[108]

Abdullah, K. G., Bird, C. E., Buehler, J. D., Gattie, L. C., Savani, M. R., Sternisha, A. C., Xiao, Y., Levitt, M. M., Hicks, W. H., Li, W. H. et al. Establishment of patient-derived organoid models of lower-grade glioma. Neuro-Oncology, 2022, 24(4): 612–623. https://doi.org/10.1093/neuonc/noab273

[109]

Schumacher, M. A., Aihara, E., Feng, R., Engevik, A., Shroyer, N. F., Ottemann, K. M., Worrell, R. T., Montrose, M. H., Shivdasani, R. A., Zavros, Y. The use of murine-derived fundic organoids in studies of gastric physiology. The Journal of Physiology, 2015, 593(8): 1809–1827. https://doi.org/10.1113/jphysiol.2014.283028

[110]

Schlaermann, P., Toelle, B., Berger, H., Schmidt, S. C., Glanemann, M., Ordemann, J., Bartfeld, S., Mollenkopf, H. J., Meyer, T. F. A novel human gastric primary cell culture system for modelling Helicobacter pyloriinfection in vitro. Gut, 2016, 65(2): 202–213. https://doi.org/10.1136/gutjnl-2014-307949

[111]
Chakrabarti, J., Zavros, Y. Generation and use of gastric organoids for the study of Helicobacter pylori pathogenesis. In: Methods in Cell Biology. Amsterdam: Elsevier, 2020 : 23–46. https://doi.org/10.1016/bs.mcb.2020.04.011
[112]

Seidlitz, T., Merker, S. R., Rothe, A., Zakrzewski, F., von Neubeck, C., Grützmann, K., Sommer, U., Schweitzer, C., Schölch, S., Uhlemann, H. et al. Human gastric cancer modelling using organoids. Gut, 2019, 68(2): 207–217. https://doi.org/10.1136/gutjnl-2017-314549

[113]

Schmäche, T., Fohgrub, J., Klimova, A., Laaber, K., Drukewitz, S., Merboth, F., Hennig, A., Seidlitz, T., Herbst, F., Baenke, F. et al. Stratifying esophago-gastric cancer treatment using a patient-derived organoid-based threshold. Molecular Cancer, 2024, 23(1): 10. https://doi.org/10.1186/s12943-023-01919-3

[114]

Eicher, A. K., Kechele, D. O., Sundaram, N., Berns, H. M., Poling, H. M., Haines, L. E., Sanchez, J. G., Kishimoto, K., Krishnamurthy, M., Han, L. et al. Functional human gastrointestinal organoids can be engineered from three primary germ layers derived separately from pluripotent stem cells. Cell Stem Cell, 2022, 29(1): 36–51.e6. https://doi.org/10.1016/j.stem.2021.10.010

[115]

Yan, H. H. N., Siu, H. C., Law, S., Ho, S. L., Yue, S. S. K., Tsui, W. Y., Chan, D., Chan, A. S., Ma, S., Lam, K. O. et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell, 2018, 23(6): 882–897.e11. https://doi.org/10.1016/j.stem.2018.09.016

[116]

Yuan, L., Xie, S. F., Bai, H. R., Liu, X. Q., Cai, P., Lu, J., Wang, C. H., Lin, Z. B., Li, S. Y., Guo, Y. J. et al. Reconstruction of dynamic mammary mini gland in vitro for normal physiology and oncogenesis. Nature Methods, 2023, 20(12): 2021–2033. https://doi.org/10.1038/s41592-023-02039-y

[117]

Kopper, O., de Witte, C. J., Lõhmussaar, K., Valle-Inclan, J. E., Hami, N., Kester, L., Balgobind, A. V., Korving, J., Proost, N., Begthel, H. et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nature Medicine, 2019, 25(5): 838–849. https://doi.org/10.1038/s41591-019-0422-6

[118]

Servant, R., Garioni, M., Vlajnic, T., Blind, M., Pueschel, H., Müller, D. C., Zellweger, T., Templeton, A. J., Garofoli, A., Maletti, S. et al. Prostate cancer patient-derived organoids: Detailed outcome from a prospective cohort of 81 clinical specimens. The Journal of Pathology, 2021, 254(5): 543–555. https://doi.org/10.1002/path.5698

[119]

Gao, D., Vela, I., Sboner, A., Iaquinta, P. J., Karthaus, W. R., Gopalan, A., Dowling, C., Wanjala, J. N., Undvall, E. A., Arora, V. K. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell, 2014, 159(1): 176–187. https://doi.org/10.1016/j.cell.2014.08.016

[120]

Pamarthy, S., Sabaawy, H. E. Patient derived organoids in prostate cancer: Improving therapeutic efficacy in precision medicine. Molecular Cancer, 2021, 20(1): 125. https://doi.org/10.1186/s12943-021-01426-3

[121]

Jørgensen, A., Young, J., Nielsen, J. E., Joensen, U. N., Toft, B. G., Rajpert-De Meyts, E., Loveland, K. L. Hanging drop cultures of human testis and testis cancer samples: A model used to investigate activin treatment effects in a preserved niche. British Journal of Cancer, 2014, 110(10): 2604–2614. https://doi.org/10.1038/bjc.2014.160

[122]

Dietrich, N., Castellanos-Martinez, R., Kemmling, J., Heuser, A., Schnoor, M., Schinner, C., Spindler, V. Adhesion of pancreatic tumor cell clusters by desmosomal molecules enhances early liver metastases formation. Scientific Reports, 2024, 14: 18189. https://doi.org/10.1038/s41598-024-68493-6

[123]

Chakkera, M., Foote, J. B., Farran, B., Nagaraju, G. P. Breaking the stromal barrier in pancreatic cancer: Advances and challenges. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 2024, 1879(1): 189065. https://doi.org/10.1016/j.bbcan.2023.189065

[124]

Ji, D. B., Wu, A. W. Organoid in colorectal cancer: Progress and challenges. Chinese Medical Journal, 2020, 133(16): 1971–1977. https://doi.org/10.1097/CM9.0000000000000882

[125]

Ban, Q. Y., Li, H. S., Jiang, X. X., Liu, M., Ge, X. Y., Lu, M. J., Guo, S. Y., Chen, Y., Lin, Q., Xu, H. et al. Current applications of colorectal cancer organoids: A review. Journal of Gastrointestinal and Liver Diseases, 2024, 33(2): 269–277. https://doi.org/10.15403/jgld-5388

[126]

Tiriac, H., Belleau, P., Engle, D. D., Plenker, D., Deschênes, A., Somerville, T., Froeling, F., Burkhart, R., Denroche, R., Jang, G. et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discovery, 2018, 8(9): 1112–1129. https://doi.org/10.1158/2159-8290.CD-18-0349

[127]

Li, L. Y., Liu, J. P., Cao, Q., Zhao, Y. Q., Shi, Y. H., Wang, C., Zhang, J., Rong, M. J., Tao, X., Deng, W. et al. Crossroad of ovarian cancer organoid culture: Single cell suspension and mechanically sheared fragment. Cell Organoid, 2024, 1: 9410005. https://doi.org/10.26599/CO.2024.9410005

[128]

Wang, C., Huang, A., Shi, Y. H., Liu, J. P., Li, L. Y., Zhang, J., Rong, M. J., Zhang, X., Cai, C. H., Han, X. X. An advanced culture methodology suitable for the self-assemble and tissue-fragment derived intrahepatic cholangiocarcinoma organoids. Cell Organoid, 2024, 1: 9410003. https://doi.org/10.26599/co.2024.9410003

[129]

Zhang, J., Liu, J. P., Shi, Y. H., Li, L. Y., Wang, C., Rong, M. J., Tao, B. B., Tan, H., Deng, W., Cai, C. H. et al. Generation of patient-derived glioblastoma organoids: A comparative study of enzymatic digestion and mechanical fragmentation methods. Cell Organoid, 2024, 1: 9410004. https://doi.org/10.26599/co.2024.9410004

[130]

Pan, J., Wan, J. Methodological comparison of FACS and MACS isolation of enriched microglia and astrocytes from mouse brain. Journal of Immunological Methods, 2020, 486: 112834. https://doi.org/10.1016/j.jim.2020.112834

[131]

Sutermaster, B. A., Darling, E. M. Considerations for high-yield, high-throughput cell enrichment: Fluorescence versus magnetic sorting. Scientific Reports, 2019, 9: 227. https://doi.org/10.1038/s41598-018-36698-1

[132]

Chico, M. A., Mesas, C., Doello, K., Quiñonero, F., Perazzoli, G., Ortiz, R., Prados, J., Melguizo, C. Cancer stem cells in sarcomas: in vitro isolation and role as prognostic markers: A systematic review. Cancers, 2023, 15(9): 2449. https://doi.org/10.3390/cancers15092449

[133]
Dey, M., Ozbolat, I. T. 3D bioprinting of cells, tissues and organs. Scientific Reports, 2020 , 10: 14023. https://doi.org/10.1038/s41598-020-70086-y
[134]
Jeffries, G. D. M., Xu, S. J., Lobovkina, T., Kirejev, V., Tusseau, F., Gyllensten, C., Singh, A. K., Karila, P., Moll, L., Orwar, O. 3D micro-organisation printing of mammalian cells to generate biological tissues. Scientific Reports, 2020 , 10(1): 19529. https://doi.org/10.1038/s41598-020-74191-w
[135]

Park, D., Lee, J., Lee, Y., Son, K., Choi, J. W., Jeang, W. J., Choi, H., Hwang, Y., Kim, H. Y., Jeon, N. L. Aspiration-mediated hydrogel micropatterning using rail-based open microfluidic devices for high-throughput 3D cell culture. Scientific Reports, 2021, 11(1): 19986. https://doi.org/10.1038/s41598-021-99387-6

[136]

Saorin, G., Caligiuri, I., Rizzolio, F. Microfluidic organoids-on-a-chip: The future of human models. Seminars in Cell & Developmental Biology, 2023, 144: 41–54. https://doi.org/10.1016/j.semcdb.2022.10.001

[137]

Sackmann, E. K., Fulton, A. L., Beebe, D. J. The present and future role of microfluidics in biomedical research. Nature, 2014, 507(7491): 181–189. https://doi.org/10.1038/nature13118

[138]

Zheng, F. Y., Fu, F. F., Cheng, Y., Wang, C. Y., Zhao, Y. J., Gu, Z. Z. Organ-on-a-chip systems: Microengineering to biomimic living systems. Small, 2016, 12(17): 2253–2282. https://doi.org/10.1002/smll.201503208

[139]

Yan, J. S., Li, Z. W., Guo, J. C., Liu, S., Guo, J. H. Organ-on-a-chip: A new tool for in vitro research. Biosensors & Bioelectronics, 2022, 216: 114626. https://doi.org/10.1016/j.bios.2022.114626

[140]

de Haan, P., Ianovska, M. A., Mathwig, K., van Lieshout, G. A. A., Triantis, V., Bouwmeester, H., Verpoorte, E. Digestion-on-a-chip: A continuous-flow modular microsystem recreating enzymatic digestion in the gastrointestinal tract. Lab on a Chip, 2019, 19(9): 1599–1609. https://doi.org/10.1039/c8lc01080c

[141]

Chen, C. X., Ji, W. Z., Niu, Y. Y. Primate organoids and gene-editing technologies toward next-generation biomedical research. Trends in Biotechnology, 2021, 39(12): 1332–1342. https://doi.org/10.1016/j.tibtech.2021.03.010

[142]

Aronowitz, J. A., Lockhart, R. A., Hakakian, C. S. Mechanical versus enzymatic isolation of stromal vascular fraction cells from adipose tissue. SpringerPlus, 2015, 4(1): 713. https://doi.org/10.1186/s40064-015-1509-2

[143]

Zhou, C. C., Wu, Y. B., Wang, Z. Y., Liu, Y. L., Yu, J. Q., Wang, W. P., Chen, S. R., Wu, W. H., Wang, J. D., Qian, G. W. et al. Standardization of organoid culture in cancer research. Cancer Medicine, 2023, 12(13): 14375–14386. https://doi.org/10.1002/cam4.5943

[144]

Hu, P., Zhang, W. H., Xin, H. B., Deng, G. Single cell isolation and analysis. Frontiers in Cell and Developmental Biology, 2016, 4: 116. https://doi.org/10.3389/fcell.2016.00116

[145]

Qu, M. L., Xiong, L., Lyu, Y. L., Zhang, X. N., Shen, J., Guan, J. Y., Chai, P. Y., Lin, Z. Q., Nie, B. Y., Li, C. et al. Establishment of intestinal organoid cultures modeling injury-associated epithelial regeneration. Cell Research, 2021, 31(3): 259–271. https://doi.org/10.1038/s41422-020-00453-x

[146]

Li, X. D., Francies, H. E., Secrier, M., Perner, J., Miremadi, A., Galeano-Dalmau, N., Barendt, W. J., Letchford, L., Leyden, G. M., Goffin, E. K. et al. Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics. Nature Communications, 2018, 9: 2983. https://doi.org/10.1038/s41467-018-05190-9

[147]

Aisenbrey, E. A., Murphy, W. L. Synthetic alternatives to Matrigel. Nature Reviews Materials, 2020, 5(7): 539–551. https://doi.org/10.1038/s41578-020-0199-8

Cell Organoid
Cite this article:
Ren J, Liu M, Rong M, et al. The pros and cons of mechanical dissociation and enzymatic digestion in patient-derived organoid cultures for solid tumor. Cell Organoid, 2024, https://doi.org/10.26599/CO.2024.9410009

462

Views

109

Downloads

0

Crossref

Altmetrics

Received: 06 October 2024
Revised: 22 November 2024
Accepted: 25 November 2024
Published: 12 December 2024
© The Author(s) 2024. Published by Tsinghua University Press

The articles published in this open access journal are distributed under the termsof the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution andreproduction in any medium, provided the original work is properly cited.

Return