Evolving from organoid to assembloid with enhanced cellular interactions
Jiarui Liu1, Yitong Shi1, Xianqin Shen1, Wei Zhang2, Xi Wang1,3(), Kai Wang1()
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
TianXinFu (Beijing) Medical Appliance Co., Ltd., Beijing 102200, China
State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
Show Author Information
Hide Author Information
Highlights
• Detailed analysis of the four key assembly strategies for building physiologically relevant assembloids: multi-region, multi-lineage, multi-gradient, and multi-layer.
• Application of assembloids in modeling complex interactions across human systems, including the nervous, digestive, urinary, reproductive, and circulatory systems.
• Identification of key challenges such as reproducibility and vascularization, with proposed solutions using bioengineering techniques and artificial intelligence to improve model accuracy and functionality.
Graphical Abstract
View original imageDownload original image
This review explores the emerging field of assembloid technology, which integrates multiple organoids or cell types into self-organizing three-dimensional (3D) systems to better model inter-tissue communication. It categorizes assembloids into four key assembly strategies and discusses their applications across various human systems, while also addressing challenges and future prospects.
Abstract
In recent years, the study of complex cellular interactions has been hampered by the limitations of traditional two-dimensional (2D) and single-cell type culture systems, which fail to accurately mimic the intricate dynamics of human tissues. To bridge this gap, assembloid technology has emerged as a transformative approach. Assembloids are self-organizing three-dimensional (3D) systems formed by integrating multiple organoids or cell types, providing a more accurate model for studying inter-tissue and inter-organ communication. Here, we categorize current assembloids into four types based on assembly strategies—multi-region, multi-lineage, multi-gradient, and multi-layer—each designed to replicate specific biological phenomena with high fidelity. We also explore the diverse applications of assembloids across various human systems, demonstrating the broad application scope of assembloids. Finally, we highlight the challenges faced by assembloid technology and outline its future prospects. Overall, assembloids represent a powerful platform for advancing research in developmental biology, disease modeling, and drug discovery.
No abstract is available for this article. Click the button above to view the PDF directly.
References
[1]
Gerardo-Nava, J. L., Jansen, J., Günther, D., Klasen, L., Thiebes, A. L., Niessing, B., Bergerbit, C., Meyer, A. A., Linkhorst, J., Barth, M. et al. Transformative materials to create 3D functional human tissue models in vitro in a reproducible manner. Advanced Healthcare Materials, 2023, 12(20): e2301030. https://doi.org/10.1002/adhm.202301030
Dhandayuthapani, B., Yoshida, Y., Maekawa, T., Kumar, D. S. Polymeric scaffolds in tissue engineering application: A review. International Journal of Polymer Science, 2011, 2011: 290602. https://doi.org/10.1155/2011/290602
Pașca, S. P., Arlotta, P., Bateup, H. S., Camp, J. G., Cappello, S., Gage, F. H., Knoblich, J. A., Kriegstein, A. R., Lancaster, M. A., Ming, G. L. et al. A nomenclature consensus for nervous system organoids and assembloids. Nature, 2022, 609: 907–910. https://doi.org/10.1038/s41586-022-05219-6
Cederquist, G. Y., Asciolla, J. J., Tchieu, J., Walsh, R. M., Cornacchia, D., Resh, M. D., Studer, L. Specification of positional identity in forebrain organoids. Nature Biotechnology, 2019, 37(4): 436–444. https://doi.org/10.1038/s41587-019-0085-3
Lancaster, M. A., Renner, M., Martin, C. A., Wenzel, D., Bicknell, L. S., Hurles, M. E., Homfray, T., Penninger, J. M., Jackson, A. P., Knoblich, J. A. Cerebral organoids model human brain development and microcephaly. Nature, 2013, 501(7467): 373–379. https://doi.org/10.1038/nature12517
Renner, M., Lancaster, M. A., Bian, S., Choi, H., Ku, T., Peer, A., Chung, K., Knoblich, J. A. Self-organized developmental patterning and differentiation in cerebral organoids. The EMBO Journal, 2017, 36(10): 1316–1329. https://doi.org/10.15252/embj.201694700
Sagner, A., Briscoe, J. Morphogen interpretation: Concentration, time, competence, and signaling dynamics. WIREs Developmental Biology, 2017, 6(4): e271. https://doi.org/10.1002/wdev.271
Xiang, Y. F., Tanaka, Y., Cakir, B., Patterson, B., Kim, K. Y., Sun, P. N., Kang, Y. J., Zhong, M., Liu, X. R., Patra, P. et al. hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids. Cell Stem Cell, 2019 , 24(3): 487–497.e7. https://doi.org/10.1016/j.stem.2018.12.015
Scuto, M., Rampulla, F., Reali, G. M., Spanò, S. M., Trovato Salinaro, A., Calabrese, V. Hormetic nutrition and redox regulation in gut-brain axis disorders. Antioxidants, 2024, 13(4): 484. https://doi.org/10.3390/antiox13040484
Mabry, S. A., Pavon, N. Exploring the prospects, advancements, and challenges of in vitro modeling of the heart-brain axis. Frontiers in Cellular Neuroscience, 2024, 18: 1386355. https://doi.org/10.3389/fncel.2024.1386355
Mei, J., Liu, X. J., Tian, H. X., Chen, Y. X., Cao, Y., Zeng, J., Liu, Y. C., Chen, Y. P., Gao, Y., Yin, J. Y. et al. Tumour organoids and assembloids: Patient-derived cancer avatars for immunotherapy. Clinical and Translational Medicine, 2024, 14(4): e1656. https://doi.org/10.1002/ctm2.1656
Lin, C. J., Lin, C. Y., Chen, C. H., Zhou, B., Chang, C. P. Partitioning the heart: Mechanisms of cardiac septation and valve development. Development, 2012, 139(18): 3277–3299. https://doi.org/10.1242/dev.063495
Birey, F., Andersen, J., Makinson, C. D., Islam, S., Wei, W., Huber, N., Fan, H. C., Metzler, K. R. C., Panagiotakos, G., Thom, N. et al. Assembly of functionally integrated human forebrain spheroids. Nature, 2017, 545: 54–59. https://doi.org/10.1038/nature22330
Xiang, Y. F., Tanaka, Y., Patterson, B., Kang, Y. J., Govindaiah, G., Roselaar, N., Cakir, B., Kim, K. Y., Lombroso, A. P., Hwang, S. M. et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell, 2017, 21(3): 383–398.e7. https://doi.org/10.1016/j.stem.2017.07.007
Bagley, J. A., Reumann, D., Bian, S., Lévi-Strauss, J., Knoblich, J. A. Fused cerebral organoids model interactions between brain regions. Nature Methods, 2017, 14(7): 743–751. https://doi.org/10.1038/nmeth.4304
Faustino Martins, J. M., Fischer, C., Urzi, A., Vidal, R., Kunz, S., Ruffault, P. L., Kabuss, L., Hube, I., Gazzerro, E., Birchmeier, C. et al. Self-organizing 3D human trunk neuromuscular organoids. Cell Stem Cell, 2020, 26(2): 172–186.e6. https://doi.org/10.1016/j.stem.2019.12.007
Ng, W. H., Johnston, E. K., Tan, J. J., Bliley, J. M., Feinberg, A. W., Stolz, D. B., Sun, M., Wijesekara, P., Hawkins, F., Kotton, D. N. et al. Recapitulating human cardio-pulmonary co-development using simultaneous multilineage differentiation of pluripotent stem cells. eLife, 2022, 11: e67872. https://doi.org/10.7554/eLife.67872
Silva, A. C., Matthys, O. B., Joy, D. A., Kauss, M. A., Natarajan, V., Lai, M. H., Turaga, D., Blair, A. P., Alexanian, M., Bruneau, B. G. et al. Co-emergence of cardiac and gut tissues promotes cardiomyocyte maturation within human iPSC-derived organoids. Cell Stem Cell, 2021, 28(12): 2137–2152.e6. https://doi.org/10.1016/j.stem.2021.11.007
Cakir, B., Xiang, Y. F., Tanaka, Y., Kural, M. H., Parent, M., Kang, Y. J., Chapeton, K., Patterson, B., Yuan, Y. F., He, C. S. et al. Engineering of human brain organoids with a functional vascular-like system. Nature Methods, 2019, 16: 1169–1175. https://doi.org/10.1038/s41592-019-0586-5
Abud, E. M., Ramirez, R. N., Martinez, E. S., Healy, L. M., Nguyen, C. H. H., Newman, S. A., Yeromin, A. V., Scarfone, V. M., Marsh, S. E., Fimbres, C. et al. iPSC-derived human microglia-like cells to study neurological diseases. Scientific Reports, 2017 , 94(2): 278–293.e9. https://doi.org/10.1016/j.neuron.2017.03.042
Shi, Y. C., Sun, L., Wang, M. D., Liu, J. W., Zhong, S. J., Li, R., Li, P., Guo, L. J., Fang, A., Chen, R. G. et al. Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biology, 2020, 18(5): e3000705. https://doi.org/10.1371/journal.pbio.3000705
Suzuki, I. K., Vanderhaeghen, P. Is this a brain which I see before me? Modeling human neural development with pluripotent stem cells. Development, 2015, 142(18): 3138–3150. https://doi.org/10.1242/dev.120568
Lin, M. Q., Hartl, K., Heuberger, J., Beccaceci, G., Berger, H., Li, H., Liu, L. C., Müllerke, S., Conrad, T., Heymann, F. et al. Establishment of gastrointestinal assembloids to study the interplay between epithelial crypts and their mesenchymal niche. Nature Communications, 2023, 14(1): 3025. https://doi.org/10.1038/s41467-023-38780-3
Kim, E., Choi, S., Kang, B., Kong, J., Kim, Y., Yoon, W. H., Lee, H. R., Kim, S., Kim, H. M., Lee, H. et al. Creation of bladder assembloids mimicking tissue regeneration and cancer. Nature, 2020, 588(7839): 664–669. https://doi.org/10.1038/s41586-020-3034-x
Cai, Y., Li, N., Li, H. B. Combining endometrial assembloids and blastoids to delineate the molecular roadmap of implantation. Stem Cell Reviews and Reports, 2023, 19(5): 1268–1282. https://doi.org/10.1007/s12015-023-10527-z
Eicher, A. K., Kechele, D. O., Sundaram, N., Berns, H. M., Poling, H. M., Haines, L. E., Sanchez, J. G., Kishimoto, K., Krishnamurthy, M., Han, L. et al. Functional human gastrointestinal organoids can be engineered from three primary germ layers derived separately from pluripotent stem cells. Cell Stem Cell, 2022, 29(1): 36–51.e6. https://doi.org/10.1016/j.stem.2021.10.010
Di Lullo, E., Kriegstein, A. R. The use of brain organoids to investigate neural development and disease. Nature Reviews Neuroscience, 2017, 18(10): 573–584. https://doi.org/10.1038/nrn.2017.107
Kim, J., Koo, B. K., Knoblich, J. A. Human organoids: Model systems for human biology and medicine. Nature Reviews Molecular Cell Biology, 2020, 21(10): 571–584. https://doi.org/10.1038/s41580-020-0259-3
Sloan, S. A., Andersen, J., Pașca, A. M., Birey, F., Pașca, S. P. Generation and assembly of human brain region-specific three-dimensional cultures. Nature Protocols, 2018, 13(9): 2062–2085. https://doi.org/10.1038/s41596-018-0032-7
Chen, X. Y., Saiyin, H., Liu, Y., Wang, Y. Q., Li, X., Ji, R., Ma, L. X. Human striatal organoids derived from pluripotent stem cells recapitulate striatal development and compartments. PLoS Biology, 2022, 20(11): e3001868. https://doi.org/10.1371/journal.pbio.3001868
Miura, Y., Li, M. Y., Birey, F., Ikeda, K., Revah, O., Thete, M. V., Park, J. Y., Puno, A., Lee, S. H., Porteus, M. H. et al. Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells. Nature Biotechnology, 2020, 38(12): 1421–1430. https://doi.org/10.1038/s41587-020-00763-w
Andersen, J., Revah, O., Miura, Y., Thom, N., Amin, N. D., Kelley, K. W., Singh, M., Chen, X., Thete, M. V., Walczak, E. M. et al. Generation of functional human 3D cortico-motor assembloids. Cell, 2020, 183(7): 1913–1929.e26. https://doi.org/10.1016/j.cell.2020.11.017
Rockel, A. F., Wagner, N., Spenger, P., Ergün, S., Wörsdörfer, P. Neuro-mesodermal assembloids recapitulate aspects of peripheral nervous system development in vitro. Stem Cell Reports, 2023, 18(5): 1155–1165. https://doi.org/10.1016/j.stemcr.2023.03.012
Fligor, C. M., Lavekar, S. S., Harkin, J., Shields, P. K., VanderWall, K. B., Huang, K. C., Gomes, C., Meyer, J. S. Extension of retinofugal projections in an assembled model of human pluripotent stem cell-derived organoids. Stem Cell Reports, 2021, 16(9): 2228–2241. https://doi.org/10.1016/j.stemcr.2021.05.009
Birey, F., Li, M. Y., Gordon, A., Thete, M. V., Valencia, A. M., Revah, O., Paşca, A. M., Geschwind, D. H., Paşca, S. P. Dissecting the molecular basis of human interneuron migration in forebrain assembloids from Timothy syndrome. Cell Stem Cell, 2022, 29(2): 248–264.e7. https://doi.org/10.1016/j.stem.2021.11.011
Chen, X. Y., Birey, F., Li, M. Y., Revah, O., Levy, R., Thete, M. V., Reis, N., Kaganovsky, K., Onesto, M., Sakai, N. et al. Antisense oligonucleotide therapeutic approach for Timothy syndrome. Nature, 2024, 628: 818–825. https://doi.org/10.1038/s41586-024-07310-6
Wu, S. S., Hong, Y., Chu, C., Gan, Y. X., Li, X. R., Tao, M. D., Wang, D., Hu, H., Zheng, Z. L., Zhu, Q. et al. Construction of human 3D striato-nigral assembloids to recapitulate medium spiny neuronal projection defects in Huntington’s disease. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(22): e2316176121. https://doi.org/10.1073/pnas.2316176121
Park, J. C., Han, J. W., Lee, W., Kim, J., Lee, S. E., Lee, D., Choi, H., Han, J., Kang, Y. J., Diep, Y. N. et al. Microglia gravitate toward amyloid plaques surrounded by externalized phosphatidylserine via TREM2. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2024, 11(34): e2400064. https://doi.org/10.1002/advs.202400064
Cugola, F. R., Fernandes, I. R., Russo, F. B., Freitas, B. C., Dias, J. L. M., Guimarães, K. P., Benazzato, C., Almeida, N., Pignatari, G. C., Romero, S. et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature, 2016, 534: 267–271. https://doi.org/10.1038/nature18296
Qian, X., Nguyen, H. N., Song, M. M., Hadiono, C., Ogden, S. C., Hammack, C., Yao, B., Hamersky, G. R., Jacob, F., Zhong, C. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell, 2016, 165(5): 1238–1254. https://doi.org/10.1016/j.cell.2016.04.032
Wang, L., Sievert, D., Clark, A. E., Lee, S., Federman, H., Gastfriend, B. D., Shusta, E. V., Palecek, S. P., Carlin, A. F., Gleeson, J. G. A human three-dimensional neural-perivascular ‘assembloid’ promotes astrocytic development and enables modeling of SARS-CoV-2 neuropathology. Nature Medicine, 2021, 27(9): 1600–1606. https://doi.org/10.1038/s41591-021-01443-1
Kong, D., Park, K. H., Kim, D. H., Kim, N. G., Lee, S. E., Shin, N., Kook, M. G., Kim, Y. B., Kang, K. S. Cortical-blood vessel assembloids exhibit Alzheimer’s disease phenotypes by activating glia after SARS-CoV-2 infection. Cell Death Discovery, 2023, 9(1): 32. https://doi.org/10.1038/s41420-022-01288-8
Qu, F. F., Brough, S. C., Michno, W., Madubata, C. J., Hartmann, G. G., Puno, A., Drainas, A. P., Bhattacharya, D., Tomasich, E., Lee, M. C. et al. Crosstalk between small-cell lung cancer cells and astrocytes mimics brain development to promote brain metastasis. Nature Cell Biology, 2023, 25(10): 1506–1519. https://doi.org/10.1038/s41556-023-01241-6
Kong, D., Kwon, D., Moon, B., Kim, D. H., Kim, M. J., Choi, J., Kang, K. S. CD19 CAR-expressing iPSC-derived NK cells effectively enhance migration and cytotoxicity into glioblastoma by targeting to the pericytes in tumor microenvironment. Biomedicine & Pharmacotherapy, 2024, 174: 116436. https://doi.org/10.1016/j.biopha.2024.116436
Sato, T., Vries, R. G., Snippert, H. J., van de Wetering, M., Barker, N., Stange, D. E., van Es, J. H., Abo, A., Kujala, P., Peters, P. J. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459(7244): 262–265. https://doi.org/10.1038/nature07935
Koike, H., Iwasawa, K., Ouchi, R., Maezawa, M., Giesbrecht, K., Saiki, N., Ferguson, A., Kimura, M., Thompson, W. L., Wells, J. M. et al. Modelling human hepato-biliary-pancreatic organogenesis from the foregut–midgut boundary. Nature, 2019, 574: 112–116. https://doi.org/10.1038/s41586-019-1598-0
Choi, J. I., Rim, J. H., Jang, S. I., Park, J. S., Park, H., Cho, J. H., Lim, J. B. The role of Jagged1 as a dynamic switch of cancer cell plasticity in PDAC assembloids. Theranostics, 2022, 12(9): 4431–4445. https://doi.org/10.7150/thno.71364
Xu, X. X., Gao, Y. H., Dai, J. L., Wang, Q. Q., Wang, Z. X., Liang, W. Q., Zhang, Q., Ma, W. B., Liu, Z. B., Luo, H. et al. Gastric cancer assembloids derived from patient-derived xenografts: A preclinical model for therapeutic drug screening. Small Methods, 2024, 8(9): e2400204. https://doi.org/10.1002/smtd.202400204
Lv, Q. J., Wang, Y. Z., Xiong, Z. Y., Xue, Y. F., Li, J. J., Chen, M. Y., Zhou, K. J., Xu, H. T., Zhang, X. G., Liu, J. et al. Microvascularized tumor assembloids model for drug delivery evaluation in colorectal cancer-derived peritoneal metastasis. Acta Biomaterialia, 2023, 168: 346–360. https://doi.org/10.1016/j.actbio.2023.06.034
Gao, Z. P., Wang, S., Sui, Y. F., Zhang, Q., Yang, Y., Huang, J. Q., Xiong, Y. C., Ma, T., Zhang, X., Zheng, H. R. A multifunctional acoustic tweezer for heterogenous assembloids patterning. Small Structures, 2023, 4(5): 2200288. https://doi.org/10.1002/sstr.202200288
Heidari-Khoei, H., Esfandiari, F., Moini, A., Yari, S., Saber, M., Ghaffari Novin, M., Piryaei, A., Baharvand, H. Derivation of hormone-responsive human endometrial organoids and stromal cells from cryopreserved biopsies. Experimental Cell Research, 2022, 417(1): 113205. https://doi.org/10.1016/j.yexcr.2022.113205
Rawlings, T. M., Makwana, K., Taylor, D. M., Molè, M. A., Fishwick, K. J., Tryfonos, M. et al. Modelling the impact of decidual senescence on embryo implantation in human endometrial assembloids. eLife, 2021, 10: e69603. https://doi.org/10.7554/eLife.69603
Rawlings, T. M., Tryfonos, M., Makwana, K., Taylor, D. M., Brosens, J. J., Lucas, E. S. Endometrial assembloids to model human embryo implantation in vitro. In: Embryo Models In Vitro. New York, NY: Springer US, 2023 : 63–74. https://doi.org/10.1007/7651_2023_495
Shibata, S., Endo, S., Nagai, L. A. E., Kobayashi, E. H., Oike, A., Kobayashi, N., Kitamura, A., Hori, T., Nashimoto, Y., Nakato, R. et al. Modeling embryo-endometrial interface recapitulating human embryo implantation. Science Advances, 2024, 10(8): eadi4819. https://doi.org/10.1126/sciadv.adi4819
Ai, Z. Y., Niu, B. H., Yin, Y., Xiang, L. F., Shi, G. H., Duan, K., Wang, S. L., Hu, Y. J., Zhang, C., Zhang, C. T. et al. Dissecting peri-implantation development using cultured human embryos and embryo-like assembloids. Cell Research, 2023, 33(9): 661–678. https://doi.org/10.1038/s41422-023-00846-8
Alves-Lopes, J. P., Wong, F. C. K., Tang, W. W. C., Gruhn, W. H., Ramakrishna, N. B., Jowett, G. M., Jahnukainen, K., Surani, M. A. Specification of human germ cell fate with enhanced progression capability supported by hindgut organoids. Cell Reports, 2023, 42(1): 111907. https://doi.org/10.1016/j.celrep.2022.111907
Achberger, K., Probst, C., Haderspeck, J., Bolz, S., Rogal, J., Chuchuy, J., Nikolova, M., Cora, V., Antkowiak, L., Haq, W. et al. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. eLife, 2019, 8: e46188. https://doi.org/10.7554/eLife.46188
Dao, L., You, Z., Lu, L., Xu, T. Y., Sarkar, A. K., Zhu, H., Liu, M., Calandrelli, R., Yoshida, G., Lin, P. et al. Modeling blood-brain barrier formation and cerebral cavernous malformations in human PSC-derived organoids. Cell Stem Cell, 2024, 31(6): 818–833.e11. https://doi.org/10.1016/j.stem.2024.04.019
Sun, X. Y., Ju, X. C., Li, Y., Zeng, P. M., Wu, J., Zhou, Y. Y., Shen, L. B., Dong, J., Chen, Y. J., Luo, Z. G. Generation of vascularized brain organoids to study neurovascular interactions. eLife, 2022, 11: e76707. https://doi.org/10.7554/eLife.76707
Garreta, E., Moya-Rull, D., Marco, A., Amato, G., Ullate-Agote, A., Tarantino, C., Gallo, M., Esporrín-Ubieto, D., Centeno, A., Vilas-Zornoza, A. et al. Natural hydrogels support kidney organoid generation and promote in vitro angiogenesis. Adv Mater, 2024, 36(34): e2400306. https://doi.org/10.1002/adma.202400306
Takaichi, S., Tomimaru, Y., Akagi, T., Kobayashi, S., Fukuda, Y., Toya, K., Asaoka, T., Iwagami, Y., Yamada, D., Akita, H. et al. Three-dimensional vascularized β-cell spheroid tissue derived from human induced pluripotent stem cells for subcutaneous islet transplantation in a mouse model of type 1 diabetes. Transplantation, 2022, 106(1): 48–59. https://doi.org/10.1097/TP.0000000000003745
Schmidt, C., Deyett, A., Ilmer, T., Haendeler, S., Torres Caballero, A., Novatchkova, M., Netzer, M. A., Ceci Ginistrelli, L., Mancheno Juncosa, E., Bhattacharya, T. et al. Multi-chamber cardioids unravel human heart development and cardiac defects. Cell, 2023, 186(25): 5587–5605.e27. https://doi.org/10.1016/j.cell.2023.10.030
Li, J. R., Wiesinger, A., Fokkert, L., Bakker, P., de Vries, D. K., Tijsen, A. J., Pinto, Y. M., Verkerk, A. O., Christoffels, V. M., Boink, G. J. J. et al. Modeling the atrioventricular conduction axis using human pluripotent stem cell-derived cardiac assembloids. Cell Stem Cell, 2024, 31(11): 1667–1684.e6. https://doi.org/10.1016/j.stem.2024.08.008
Basak, O., Beumer, J., Wiebrands, K., Seno, H., van Oudenaarden, A., Clevers, H. Induced quiescence of Lgr5+ stem cells in intestinal organoids enables differentiation of hormone-producing enteroendocrine cells. Cell Stem Cell, 2017, 20(2): 177–190.e4. https://doi.org/10.1016/j.stem.2016.11.001
Kyttälä, A., Moraghebi, R., Valensisi, C., Kettunen, J., Andrus, C., Pasumarthy, K. K., Nakanishi, M., Nishimura, K., Ohtaka, M., Weltner, J. et al. Genetic variability overrides the impact of parental cell type and determines iPSC differentiation potential. Stem Cell Reports, 2016, 6(2): 200–212. https://doi.org/10.1016/j.stemcr.2015.12.009
Osafune, K., Caron, L., Borowiak, M., Martinez, R. J., Fitz-Gerald, C. S., Sato, Y., Cowan, C. A., Chien, K. R., Melton, D. A. Marked differences in differentiation propensity among human embryonic stem cell lines. Nature Biotechnology, 2008, 26(3): 313–315. https://doi.org/10.1038/nbt1383
Murphy, A. R., Campo, H., Julie Kim, J. Strategies for modelling endometrial diseases. Nature Reviews Endocrinology, 2022, 18(12): 727–743. https://doi.org/10.1038/s41574-022-00725-z
Tian, J. W., Yang, J., Chen, T. W., Yin, Y., Li, N., Li, Y. X., Luo, X. Y., Dong, E., Tan, H. Y., Ma, Y. P. et al. Generation of human endometrial assembloids with a luminal epithelium using air-liquid interface culture methods. Advanced Science, 2023, 10(30): e2301868. https://doi.org/10.1002/advs.202301868
Gu, Y. Y., Zhang, W. C., Wu, X. M., Zhang, Y. W., Xu, K., Su, J. C. Organoid assessment technologies. Clinical and Translational Medicine, 2023, 13(12): e1499. https://doi.org/10.1002/ctm2.1499
Drakhlis, L., Biswanath, S., Farr, C. M., Lupanow, V., Teske, J., Ritzenhoff, K., Franke, A., Manstein, F., Bolesani, E., Kempf, H. et al. Human heart-forming organoids recapitulate early heart and foregut development. Nature Biotechnology, 2021, 39: 737–746. https://doi.org/10.1038/s41587-021-00815-9
Homan, K. A., Gupta, N., Kroll, K. T., Kolesky, D. B., Skylar-Scott, M., Miyoshi, T., Mau, D., Valerius, M. T., Ferrante, T., Bonventre, J. V. et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nature Methods, 2019, 16: 255–262. https://doi.org/10.1038/s41592-019-0325-y
Cunha, A. B., Hou, J., Schuelke, C. Machine learning for stem cell differentiation and proliferation classification on electrical impedance spectroscopy. Journal of Electrical Bioimpedance, 2019, 10(1): 124–132. https://doi.org/10.2478/joeb-2019-0018
Wang, H., Li, X., You, X., Zhao, G. Harnessing the power of artificial intelligence for human living organoid research. Bioactive Materials, 2024, 42: 140–164. https://doi.org/10.1016/j.bioactmat.2024.08.027
Kegeles, E., Naumov, A., Karpulevich, E. A., Volchkov, P., Baranov, P. Convolutional neural networks can predict retinal differentiation in retinal organoids. Frontiers in Cellular Neuroscience, 2020, 14: 171. https://doi.org/10.3389/fncel.2020.00171
Park, K., Lee, J. Y., Lee, S. Y., Jeong, I., Park, S. Y., Kim, J. W., Nam, S. A., Kim, H. W., Kim, Y. K., Lee, S. Deep learning predicts the differentiation of kidney organoids derived from human induced pluripotent stem cells. Kidney Research and Clinical Practice, 2023, 42(1): 75–85. https://doi.org/10.23876/j.krcp.22.017
Kanda, G. N., Tsuzuki, T., Terada, M., Sakai, N., Motozawa, N., Masuda, T., Nishida, M., Watanabe, C. T., Higashi, T., Horiguchi, S. A. et al. Robotic search for optimal cell culture in regenerative medicine. eLife, 2022, 11: e77007. https://doi.org/10.7554/eLife.77007
Liu J, Shi Y, Shen X, et al. Evolving from organoid to assembloid with enhanced cellular interactions. Cell Organoid, 2025,https://doi.org/10.26599/CO.2025.9410010
The articles published in this open access journal are distributed under the termsof the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution andreproduction in any medium, provided the original work is properly cited.
Comparison of commonly used models in biology.
Multiple factors influence the choice of commonly used models in biology. This figure provides a comparison of the capabilities of commonly used models, including 2D models, conventional scaffold-based 3D models, unguided organoids, region-specific organoids, assembloids, and animal models, in terms of structural complexity, modeling human diseases, reproducibility, drug response predictivity, high-throughput screening compatibility, and ethical concerns. Created with BioRender.com.
Assembly strategies for building the assembloids.
Schematic overview of assembly strategies for the four primary types of assembloids: multi-region, multi-lineage, multi-gradient, and multi-layer. Created with BioRender.com.
Assembloids for recapitulating organ features and disease modelling.
(a) Cortico-motor assembloid integrating human cortical spheroids (hCS), human spinal spheroids (hSpS) and human skeletal muscle spheroids (hSkM)
[
36
]. (b) Forebrain assembloid consisting of hCS and human subpallial spheroids (hSS) derived from Timothy Syndrome (TS) individuals
[
39
]. (c) Human neural-perivascular assembloid with pericyte-like cells (PLCs) can be infected with SARS-CoV-2
[
45
]. (d) Small cell lung cancer (SCLC)-human cortical organoid (hCO) assembloids mimicked SCLC brain metastasis
[
72
]. (e) Murine colon assembloid modelled the interplay between epithelial crypts and stroma
[
26
]. (f) Pancreatic ductal adenocarcinoma (PDAC) assembloids can be used in investigating drug resistance mechanisms
[
51
]. (g) Bladder assembloids obtained by reorganizing bladder organoids with other components of the microenvironment
[
26
]. (h) Locally injured renal assembloids constructed using the multifunctional acoustic tweezer
[
54
]. (i) Co-culturing endometrial assembloids containing stromal cells with embryos
[
56
]. (j) Human endometrial assembloids with luminal structures are used for modeling endometrial diseases
[
73
,
74
]. (k) Combining brain organoids and vascular organoids derived from human pluripotent stem cells to simulate the physiology of the blood–brain barrier and related diseases
[
63
]. Created with BioRender.com. CP, cortical plate. SVZ, subventricular zone. VZ, ventricular zone.SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2. diPDAC. differentiated pancreatic ductal adenocarcinoma. CICs, cancer-initiating cells. iPS cell, induced pluripotent stem cell. ECs, endothelial cells. hPSCs, human pluripotent stem cells. BBB, blood–brain barrier.
Key challenges and future directions in assembloid technology.
Assembloid research faces several critical challenges, includinglow reproducibility, intrinsic heterogeneity, high labor intensity,difficulty in maintaining stability, and lack of vascularization. Toaddress these, standardized quality control and bioengineeringapproaches can improve reproducibility and reduce heterogeneity;artificial intelligence may alleviate labor demands by minimizingmanual intervention; and the development of universal mediacould enhance the long-term stability of assembloids.Additionally, as assembloid technologies progress, ethicalconsiderations must not be overlooked.