PDF (3.8 MB)
Collect
Submit Manuscript
Show Outline
Figures (4)

Review | Open Access | Online First

Evolving from organoid to assembloid with enhanced cellular interactions

Jiarui Liu1Yitong Shi1Xianqin Shen1Wei Zhang2Xi Wang1,3()Kai Wang1()
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
TianXinFu (Beijing) Medical Appliance Co., Ltd., Beijing 102200, China
State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
Show Author Information

Highlights

• Detailed analysis of the four key assembly strategies for building physiologically relevant assembloids: multi-region, multi-lineage, multi-gradient, and multi-layer.

• Application of assembloids in modeling complex interactions across human systems, including the nervous, digestive, urinary, reproductive, and circulatory systems.

• Identification of key challenges such as reproducibility and vascularization, with proposed solutions using bioengineering techniques and artificial intelligence to improve model accuracy and functionality.

Graphical Abstract

View original image Download original image
This review explores the emerging field of assembloid technology, which integrates multiple organoids or cell types into self-organizing three-dimensional (3D) systems to better model inter-tissue communication. It categorizes assembloids into four key assembly strategies and discusses their applications across various human systems, while also addressing challenges and future prospects.

Abstract

In recent years, the study of complex cellular interactions has been hampered by the limitations of traditional two-dimensional (2D) and single-cell type culture systems, which fail to accurately mimic the intricate dynamics of human tissues. To bridge this gap, assembloid technology has emerged as a transformative approach. Assembloids are self-organizing three-dimensional (3D) systems formed by integrating multiple organoids or cell types, providing a more accurate model for studying inter-tissue and inter-organ communication. Here, we categorize current assembloids into four types based on assembly strategies—multi-region, multi-lineage, multi-gradient, and multi-layer—each designed to replicate specific biological phenomena with high fidelity. We also explore the diverse applications of assembloids across various human systems, demonstrating the broad application scope of assembloids. Finally, we highlight the challenges faced by assembloid technology and outline its future prospects. Overall, assembloids represent a powerful platform for advancing research in developmental biology, disease modeling, and drug discovery.

References

[1]

Gerardo-Nava, J. L., Jansen, J., Günther, D., Klasen, L., Thiebes, A. L., Niessing, B., Bergerbit, C., Meyer, A. A., Linkhorst, J., Barth, M. et al. Transformative materials to create 3D functional human tissue models in vitro in a reproducible manner. Advanced Healthcare Materials, 2023, 12(20): e2301030. https://doi.org/10.1002/adhm.202301030

[2]

Dhandayuthapani, B., Yoshida, Y., Maekawa, T., Kumar, D. S. Polymeric scaffolds in tissue engineering application: A review. International Journal of Polymer Science, 2011, 2011: 290602. https://doi.org/10.1155/2011/290602

[3]

Pașca, S. P., Arlotta, P., Bateup, H. S., Camp, J. G., Cappello, S., Gage, F. H., Knoblich, J. A., Kriegstein, A. R., Lancaster, M. A., Ming, G. L. et al. A nomenclature consensus for nervous system organoids and assembloids. Nature, 2022, 609: 907–910. https://doi.org/10.1038/s41586-022-05219-6

[4]

Cederquist, G. Y., Asciolla, J. J., Tchieu, J., Walsh, R. M., Cornacchia, D., Resh, M. D., Studer, L. Specification of positional identity in forebrain organoids. Nature Biotechnology, 2019, 37(4): 436–444. https://doi.org/10.1038/s41587-019-0085-3

[5]

Kelava, I., Lancaster, M. A. Stem cell models of human brain development. Cell Stem Cell, 2016, 18(6): 736–748. https://doi.org/10.1016/j.stem.2016.05.022

[6]

Lancaster, M. A., Renner, M., Martin, C. A., Wenzel, D., Bicknell, L. S., Hurles, M. E., Homfray, T., Penninger, J. M., Jackson, A. P., Knoblich, J. A. Cerebral organoids model human brain development and microcephaly. Nature, 2013, 501(7467): 373–379. https://doi.org/10.1038/nature12517

[7]

Renner, M., Lancaster, M. A., Bian, S., Choi, H., Ku, T., Peer, A., Chung, K., Knoblich, J. A. Self-organized developmental patterning and differentiation in cerebral organoids. The EMBO Journal, 2017, 36(10): 1316–1329. https://doi.org/10.15252/embj.201694700

[8]

O’Leary, D. D. M., Chou, S. J., Sahara, S. Area patterning of the mammalian cortex. Neuron, 2007, 56(2): 252–269. https://doi.org/10.1016/j.neuron.2007.10.010

[9]

Sagner, A., Briscoe, J. Morphogen interpretation: Concentration, time, competence, and signaling dynamics. WIREs Developmental Biology, 2017, 6(4): e271. https://doi.org/10.1002/wdev.271

[10]
Xiang, Y. F., Tanaka, Y., Cakir, B., Patterson, B., Kim, K. Y., Sun, P. N., Kang, Y. J., Zhong, M., Liu, X. R., Patra, P. et al. hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids. Cell Stem Cell, 2019 , 24(3): 487–497.e7. https://doi.org/10.1016/j.stem.2018.12.015
[11]

Scuto, M., Rampulla, F., Reali, G. M., Spanò, S. M., Trovato Salinaro, A., Calabrese, V. Hormetic nutrition and redox regulation in gut-brain axis disorders. Antioxidants, 2024, 13(4): 484. https://doi.org/10.3390/antiox13040484

[12]

Mabry, S. A., Pavon, N. Exploring the prospects, advancements, and challenges of in vitro modeling of the heart-brain axis. Frontiers in Cellular Neuroscience, 2024, 18: 1386355. https://doi.org/10.3389/fncel.2024.1386355

[13]

Mei, J., Liu, X. J., Tian, H. X., Chen, Y. X., Cao, Y., Zeng, J., Liu, Y. C., Chen, Y. P., Gao, Y., Yin, J. Y. et al. Tumour organoids and assembloids: Patient-derived cancer avatars for immunotherapy. Clinical and Translational Medicine, 2024, 14(4): e1656. https://doi.org/10.1002/ctm2.1656

[14]

Lin, C. J., Lin, C. Y., Chen, C. H., Zhou, B., Chang, C. P. Partitioning the heart: Mechanisms of cardiac septation and valve development. Development, 2012, 139(18): 3277–3299. https://doi.org/10.1242/dev.063495

[15]

Birey, F., Andersen, J., Makinson, C. D., Islam, S., Wei, W., Huber, N., Fan, H. C., Metzler, K. R. C., Panagiotakos, G., Thom, N. et al. Assembly of functionally integrated human forebrain spheroids. Nature, 2017, 545: 54–59. https://doi.org/10.1038/nature22330

[16]

Xiang, Y. F., Tanaka, Y., Patterson, B., Kang, Y. J., Govindaiah, G., Roselaar, N., Cakir, B., Kim, K. Y., Lombroso, A. P., Hwang, S. M. et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell, 2017, 21(3): 383–398.e7. https://doi.org/10.1016/j.stem.2017.07.007

[17]

Bagley, J. A., Reumann, D., Bian, S., Lévi-Strauss, J., Knoblich, J. A. Fused cerebral organoids model interactions between brain regions. Nature Methods, 2017, 14(7): 743–751. https://doi.org/10.1038/nmeth.4304

[18]

Faustino Martins, J. M., Fischer, C., Urzi, A., Vidal, R., Kunz, S., Ruffault, P. L., Kabuss, L., Hube, I., Gazzerro, E., Birchmeier, C. et al. Self-organizing 3D human trunk neuromuscular organoids. Cell Stem Cell, 2020, 26(2): 172–186.e6. https://doi.org/10.1016/j.stem.2019.12.007

[19]

Ng, W. H., Johnston, E. K., Tan, J. J., Bliley, J. M., Feinberg, A. W., Stolz, D. B., Sun, M., Wijesekara, P., Hawkins, F., Kotton, D. N. et al. Recapitulating human cardio-pulmonary co-development using simultaneous multilineage differentiation of pluripotent stem cells. eLife, 2022, 11: e67872. https://doi.org/10.7554/eLife.67872

[20]

Silva, A. C., Matthys, O. B., Joy, D. A., Kauss, M. A., Natarajan, V., Lai, M. H., Turaga, D., Blair, A. P., Alexanian, M., Bruneau, B. G. et al. Co-emergence of cardiac and gut tissues promotes cardiomyocyte maturation within human iPSC-derived organoids. Cell Stem Cell, 2021, 28(12): 2137–2152.e6. https://doi.org/10.1016/j.stem.2021.11.007

[21]

Cakir, B., Xiang, Y. F., Tanaka, Y., Kural, M. H., Parent, M., Kang, Y. J., Chapeton, K., Patterson, B., Yuan, Y. F., He, C. S. et al. Engineering of human brain organoids with a functional vascular-like system. Nature Methods, 2019, 16: 1169–1175. https://doi.org/10.1038/s41592-019-0586-5

[22]
Abud, E. M., Ramirez, R. N., Martinez, E. S., Healy, L. M., Nguyen, C. H. H., Newman, S. A., Yeromin, A. V., Scarfone, V. M., Marsh, S. E., Fimbres, C. et al. iPSC-derived human microglia-like cells to study neurological diseases. Scientific Reports, 2017 , 94(2): 278–293.e9. https://doi.org/10.1016/j.neuron.2017.03.042
[23]

Song, L. Q., Yuan, X. G., Jones, Z., Vied, C., Miao, Y., Marzano, M., Hua, T., Sang, Q. A., Guan, J. J., Ma, T. et al. Functionalization of brain region-specific spheroids with isogenic microglia-like cells. Scientific Reports, 2019, 9(1): 11055. https://doi.org/10.1038/s41598-019-47444-6

[24]

Shi, Y. C., Sun, L., Wang, M. D., Liu, J. W., Zhong, S. J., Li, R., Li, P., Guo, L. J., Fang, A., Chen, R. G. et al. Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biology, 2020, 18(5): e3000705. https://doi.org/10.1371/journal.pbio.3000705

[25]

Suzuki, I. K., Vanderhaeghen, P. Is this a brain which I see before me? Modeling human neural development with pluripotent stem cells. Development, 2015, 142(18): 3138–3150. https://doi.org/10.1242/dev.120568

[26]

Lin, M. Q., Hartl, K., Heuberger, J., Beccaceci, G., Berger, H., Li, H., Liu, L. C., Müllerke, S., Conrad, T., Heymann, F. et al. Establishment of gastrointestinal assembloids to study the interplay between epithelial crypts and their mesenchymal niche. Nature Communications, 2023, 14(1): 3025. https://doi.org/10.1038/s41467-023-38780-3

[27]

Kim, E., Choi, S., Kang, B., Kong, J., Kim, Y., Yoon, W. H., Lee, H. R., Kim, S., Kim, H. M., Lee, H. et al. Creation of bladder assembloids mimicking tissue regeneration and cancer. Nature, 2020, 588(7839): 664–669. https://doi.org/10.1038/s41586-020-3034-x

[28]

Cai, Y., Li, N., Li, H. B. Combining endometrial assembloids and blastoids to delineate the molecular roadmap of implantation. Stem Cell Reviews and Reports, 2023, 19(5): 1268–1282. https://doi.org/10.1007/s12015-023-10527-z

[29]

Eicher, A. K., Kechele, D. O., Sundaram, N., Berns, H. M., Poling, H. M., Haines, L. E., Sanchez, J. G., Kishimoto, K., Krishnamurthy, M., Han, L. et al. Functional human gastrointestinal organoids can be engineered from three primary germ layers derived separately from pluripotent stem cells. Cell Stem Cell, 2022, 29(1): 36–51.e6. https://doi.org/10.1016/j.stem.2021.10.010

[30]

Lee, M.-Y. Reader's forum. The Korean Journal of Orthodontics, 2018, 48: 213–215. https://doi.org/10.4041/kjod.2018.48.4.213

[31]

Di Lullo, E., Kriegstein, A. R. The use of brain organoids to investigate neural development and disease. Nature Reviews Neuroscience, 2017, 18(10): 573–584. https://doi.org/10.1038/nrn.2017.107

[32]

Kim, J., Koo, B. K., Knoblich, J. A. Human organoids: Model systems for human biology and medicine. Nature Reviews Molecular Cell Biology, 2020, 21(10): 571–584. https://doi.org/10.1038/s41580-020-0259-3

[33]

Sloan, S. A., Andersen, J., Pașca, A. M., Birey, F., Pașca, S. P. Generation and assembly of human brain region-specific three-dimensional cultures. Nature Protocols, 2018, 13(9): 2062–2085. https://doi.org/10.1038/s41596-018-0032-7

[34]

Chen, X. Y., Saiyin, H., Liu, Y., Wang, Y. Q., Li, X., Ji, R., Ma, L. X. Human striatal organoids derived from pluripotent stem cells recapitulate striatal development and compartments. PLoS Biology, 2022, 20(11): e3001868. https://doi.org/10.1371/journal.pbio.3001868

[35]

Miura, Y., Li, M. Y., Birey, F., Ikeda, K., Revah, O., Thete, M. V., Park, J. Y., Puno, A., Lee, S. H., Porteus, M. H. et al. Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells. Nature Biotechnology, 2020, 38(12): 1421–1430. https://doi.org/10.1038/s41587-020-00763-w

[36]

Andersen, J., Revah, O., Miura, Y., Thom, N., Amin, N. D., Kelley, K. W., Singh, M., Chen, X., Thete, M. V., Walczak, E. M. et al. Generation of functional human 3D cortico-motor assembloids. Cell, 2020, 183(7): 1913–1929.e26. https://doi.org/10.1016/j.cell.2020.11.017

[37]

Rockel, A. F., Wagner, N., Spenger, P., Ergün, S., Wörsdörfer, P. Neuro-mesodermal assembloids recapitulate aspects of peripheral nervous system development in vitro. Stem Cell Reports, 2023, 18(5): 1155–1165. https://doi.org/10.1016/j.stemcr.2023.03.012

[38]

Fligor, C. M., Lavekar, S. S., Harkin, J., Shields, P. K., VanderWall, K. B., Huang, K. C., Gomes, C., Meyer, J. S. Extension of retinofugal projections in an assembled model of human pluripotent stem cell-derived organoids. Stem Cell Reports, 2021, 16(9): 2228–2241. https://doi.org/10.1016/j.stemcr.2021.05.009

[39]

Birey, F., Li, M. Y., Gordon, A., Thete, M. V., Valencia, A. M., Revah, O., Paşca, A. M., Geschwind, D. H., Paşca, S. P. Dissecting the molecular basis of human interneuron migration in forebrain assembloids from Timothy syndrome. Cell Stem Cell, 2022, 29(2): 248–264.e7. https://doi.org/10.1016/j.stem.2021.11.011

[40]

Chen, X. Y., Birey, F., Li, M. Y., Revah, O., Levy, R., Thete, M. V., Reis, N., Kaganovsky, K., Onesto, M., Sakai, N. et al. Antisense oligonucleotide therapeutic approach for Timothy syndrome. Nature, 2024, 628: 818–825. https://doi.org/10.1038/s41586-024-07310-6

[41]

Wu, S. S., Hong, Y., Chu, C., Gan, Y. X., Li, X. R., Tao, M. D., Wang, D., Hu, H., Zheng, Z. L., Zhu, Q. et al. Construction of human 3D striato-nigral assembloids to recapitulate medium spiny neuronal projection defects in Huntington’s disease. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(22): e2316176121. https://doi.org/10.1073/pnas.2316176121

[42]

Park, J. C., Han, J. W., Lee, W., Kim, J., Lee, S. E., Lee, D., Choi, H., Han, J., Kang, Y. J., Diep, Y. N. et al. Microglia gravitate toward amyloid plaques surrounded by externalized phosphatidylserine via TREM2. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2024, 11(34): e2400064. https://doi.org/10.1002/advs.202400064

[43]

Cugola, F. R., Fernandes, I. R., Russo, F. B., Freitas, B. C., Dias, J. L. M., Guimarães, K. P., Benazzato, C., Almeida, N., Pignatari, G. C., Romero, S. et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature, 2016, 534: 267–271. https://doi.org/10.1038/nature18296

[44]

Qian, X., Nguyen, H. N., Song, M. M., Hadiono, C., Ogden, S. C., Hammack, C., Yao, B., Hamersky, G. R., Jacob, F., Zhong, C. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell, 2016, 165(5): 1238–1254. https://doi.org/10.1016/j.cell.2016.04.032

[45]

Wang, L., Sievert, D., Clark, A. E., Lee, S., Federman, H., Gastfriend, B. D., Shusta, E. V., Palecek, S. P., Carlin, A. F., Gleeson, J. G. A human three-dimensional neural-perivascular ‘assembloid’ promotes astrocytic development and enables modeling of SARS-CoV-2 neuropathology. Nature Medicine, 2021, 27(9): 1600–1606. https://doi.org/10.1038/s41591-021-01443-1

[46]

Kong, D., Park, K. H., Kim, D. H., Kim, N. G., Lee, S. E., Shin, N., Kook, M. G., Kim, Y. B., Kang, K. S. Cortical-blood vessel assembloids exhibit Alzheimer’s disease phenotypes by activating glia after SARS-CoV-2 infection. Cell Death Discovery, 2023, 9(1): 32. https://doi.org/10.1038/s41420-022-01288-8

[47]

Qu, F. F., Brough, S. C., Michno, W., Madubata, C. J., Hartmann, G. G., Puno, A., Drainas, A. P., Bhattacharya, D., Tomasich, E., Lee, M. C. et al. Crosstalk between small-cell lung cancer cells and astrocytes mimics brain development to promote brain metastasis. Nature Cell Biology, 2023, 25(10): 1506–1519. https://doi.org/10.1038/s41556-023-01241-6

[48]

Kong, D., Kwon, D., Moon, B., Kim, D. H., Kim, M. J., Choi, J., Kang, K. S. CD19 CAR-expressing iPSC-derived NK cells effectively enhance migration and cytotoxicity into glioblastoma by targeting to the pericytes in tumor microenvironment. Biomedicine & Pharmacotherapy, 2024, 174: 116436. https://doi.org/10.1016/j.biopha.2024.116436

[49]

Sato, T., Vries, R. G., Snippert, H. J., van de Wetering, M., Barker, N., Stange, D. E., van Es, J. H., Abo, A., Kujala, P., Peters, P. J. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459(7244): 262–265. https://doi.org/10.1038/nature07935

[50]

Koike, H., Iwasawa, K., Ouchi, R., Maezawa, M., Giesbrecht, K., Saiki, N., Ferguson, A., Kimura, M., Thompson, W. L., Wells, J. M. et al. Modelling human hepato-biliary-pancreatic organogenesis from the foregut–midgut boundary. Nature, 2019, 574: 112–116. https://doi.org/10.1038/s41586-019-1598-0

[51]

Choi, J. I., Rim, J. H., Jang, S. I., Park, J. S., Park, H., Cho, J. H., Lim, J. B. The role of Jagged1 as a dynamic switch of cancer cell plasticity in PDAC assembloids. Theranostics, 2022, 12(9): 4431–4445. https://doi.org/10.7150/thno.71364

[52]

Xu, X. X., Gao, Y. H., Dai, J. L., Wang, Q. Q., Wang, Z. X., Liang, W. Q., Zhang, Q., Ma, W. B., Liu, Z. B., Luo, H. et al. Gastric cancer assembloids derived from patient-derived xenografts: A preclinical model for therapeutic drug screening. Small Methods, 2024, 8(9): e2400204. https://doi.org/10.1002/smtd.202400204

[53]

Lv, Q. J., Wang, Y. Z., Xiong, Z. Y., Xue, Y. F., Li, J. J., Chen, M. Y., Zhou, K. J., Xu, H. T., Zhang, X. G., Liu, J. et al. Microvascularized tumor assembloids model for drug delivery evaluation in colorectal cancer-derived peritoneal metastasis. Acta Biomaterialia, 2023, 168: 346–360. https://doi.org/10.1016/j.actbio.2023.06.034

[54]

Gao, Z. P., Wang, S., Sui, Y. F., Zhang, Q., Yang, Y., Huang, J. Q., Xiong, Y. C., Ma, T., Zhang, X., Zheng, H. R. A multifunctional acoustic tweezer for heterogenous assembloids patterning. Small Structures, 2023, 4(5): 2200288. https://doi.org/10.1002/sstr.202200288

[55]

Heidari-Khoei, H., Esfandiari, F., Moini, A., Yari, S., Saber, M., Ghaffari Novin, M., Piryaei, A., Baharvand, H. Derivation of hormone-responsive human endometrial organoids and stromal cells from cryopreserved biopsies. Experimental Cell Research, 2022, 417(1): 113205. https://doi.org/10.1016/j.yexcr.2022.113205

[56]

Rawlings, T. M., Makwana, K., Taylor, D. M., Molè, M. A., Fishwick, K. J., Tryfonos, M. et al. Modelling the impact of decidual senescence on embryo implantation in human endometrial assembloids. eLife, 2021, 10: e69603. https://doi.org/10.7554/eLife.69603

[57]
Rawlings, T. M., Tryfonos, M., Makwana, K., Taylor, D. M., Brosens, J. J., Lucas, E. S. Endometrial assembloids to model human embryo implantation in vitro. In: Embryo Models In Vitro. New York, NY: Springer US, 2023 : 63–74. https://doi.org/10.1007/7651_2023_495
[58]

Shibata, S., Endo, S., Nagai, L. A. E., Kobayashi, E. H., Oike, A., Kobayashi, N., Kitamura, A., Hori, T., Nashimoto, Y., Nakato, R. et al. Modeling embryo-endometrial interface recapitulating human embryo implantation. Science Advances, 2024, 10(8): eadi4819. https://doi.org/10.1126/sciadv.adi4819

[59]

Ai, Z. Y., Niu, B. H., Yin, Y., Xiang, L. F., Shi, G. H., Duan, K., Wang, S. L., Hu, Y. J., Zhang, C., Zhang, C. T. et al. Dissecting peri-implantation development using cultured human embryos and embryo-like assembloids. Cell Research, 2023, 33(9): 661–678. https://doi.org/10.1038/s41422-023-00846-8

[60]

Alves-Lopes, J. P., Wong, F. C. K., Tang, W. W. C., Gruhn, W. H., Ramakrishna, N. B., Jowett, G. M., Jahnukainen, K., Surani, M. A. Specification of human germ cell fate with enhanced progression capability supported by hindgut organoids. Cell Reports, 2023, 42(1): 111907. https://doi.org/10.1016/j.celrep.2022.111907

[61]

Achberger, K., Probst, C., Haderspeck, J., Bolz, S., Rogal, J., Chuchuy, J., Nikolova, M., Cora, V., Antkowiak, L., Haq, W. et al. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. eLife, 2019, 8: e46188. https://doi.org/10.7554/eLife.46188

[62]

Ma, X., Li, H., Zhu, S., Hong, Z., Kong, W., Yuan, Q., Wu, R., Pan, Z., Zhang, J., Chen, Y. et al. Angiorganoid: Vitalizing the organoid with blood vessels. Vascular Biology (Bristol, England), 2022, 4(1): R44–R57. https://doi.org/10.1530/VB-22-0001

[63]

Dao, L., You, Z., Lu, L., Xu, T. Y., Sarkar, A. K., Zhu, H., Liu, M., Calandrelli, R., Yoshida, G., Lin, P. et al. Modeling blood-brain barrier formation and cerebral cavernous malformations in human PSC-derived organoids. Cell Stem Cell, 2024, 31(6): 818–833.e11. https://doi.org/10.1016/j.stem.2024.04.019

[64]

Sun, X. Y., Ju, X. C., Li, Y., Zeng, P. M., Wu, J., Zhou, Y. Y., Shen, L. B., Dong, J., Chen, Y. J., Luo, Z. G. Generation of vascularized brain organoids to study neurovascular interactions. eLife, 2022, 11: e76707. https://doi.org/10.7554/eLife.76707

[65]

Garreta, E., Moya-Rull, D., Marco, A., Amato, G., Ullate-Agote, A., Tarantino, C., Gallo, M., Esporrín-Ubieto, D., Centeno, A., Vilas-Zornoza, A. et al. Natural hydrogels support kidney organoid generation and promote in vitro angiogenesis. Adv Mater, 2024, 36(34): e2400306. https://doi.org/10.1002/adma.202400306

[66]

Takaichi, S., Tomimaru, Y., Akagi, T., Kobayashi, S., Fukuda, Y., Toya, K., Asaoka, T., Iwagami, Y., Yamada, D., Akita, H. et al. Three-dimensional vascularized β-cell spheroid tissue derived from human induced pluripotent stem cells for subcutaneous islet transplantation in a mouse model of type 1 diabetes. Transplantation, 2022, 106(1): 48–59. https://doi.org/10.1097/TP.0000000000003745

[67]

Schmidt, C., Deyett, A., Ilmer, T., Haendeler, S., Torres Caballero, A., Novatchkova, M., Netzer, M. A., Ceci Ginistrelli, L., Mancheno Juncosa, E., Bhattacharya, T. et al. Multi-chamber cardioids unravel human heart development and cardiac defects. Cell, 2023, 186(25): 5587–5605.e27. https://doi.org/10.1016/j.cell.2023.10.030

[68]

Li, J. R., Wiesinger, A., Fokkert, L., Bakker, P., de Vries, D. K., Tijsen, A. J., Pinto, Y. M., Verkerk, A. O., Christoffels, V. M., Boink, G. J. J. et al. Modeling the atrioventricular conduction axis using human pluripotent stem cell-derived cardiac assembloids. Cell Stem Cell, 2024, 31(11): 1667–1684.e6. https://doi.org/10.1016/j.stem.2024.08.008

[69]

Basak, O., Beumer, J., Wiebrands, K., Seno, H., van Oudenaarden, A., Clevers, H. Induced quiescence of Lgr5+ stem cells in intestinal organoids enables differentiation of hormone-producing enteroendocrine cells. Cell Stem Cell, 2017, 20(2): 177–190.e4. https://doi.org/10.1016/j.stem.2016.11.001

[70]

Kyttälä, A., Moraghebi, R., Valensisi, C., Kettunen, J., Andrus, C., Pasumarthy, K. K., Nakanishi, M., Nishimura, K., Ohtaka, M., Weltner, J. et al. Genetic variability overrides the impact of parental cell type and determines iPSC differentiation potential. Stem Cell Reports, 2016, 6(2): 200–212. https://doi.org/10.1016/j.stemcr.2015.12.009

[71]

Osafune, K., Caron, L., Borowiak, M., Martinez, R. J., Fitz-Gerald, C. S., Sato, Y., Cowan, C. A., Chien, K. R., Melton, D. A. Marked differences in differentiation propensity among human embryonic stem cell lines. Nature Biotechnology, 2008, 26(3): 313–315. https://doi.org/10.1038/nbt1383

[72]

Hung, S. C., Barbot, A., Carrasco, M. Visual perceptual learning modulates microsaccade rate and directionality. Scientific Reports, 2023, 13(1): 16525. https://doi.org/10.1038/s41598-023-42768-w

[73]

Murphy, A. R., Campo, H., Julie Kim, J. Strategies for modelling endometrial diseases. Nature Reviews Endocrinology, 2022, 18(12): 727–743. https://doi.org/10.1038/s41574-022-00725-z

[74]

Tian, J. W., Yang, J., Chen, T. W., Yin, Y., Li, N., Li, Y. X., Luo, X. Y., Dong, E., Tan, H. Y., Ma, Y. P. et al. Generation of human endometrial assembloids with a luminal epithelium using air-liquid interface culture methods. Advanced Science, 2023, 10(30): e2301868. https://doi.org/10.1002/advs.202301868

[75]

Gu, Y. Y., Zhang, W. C., Wu, X. M., Zhang, Y. W., Xu, K., Su, J. C. Organoid assessment technologies. Clinical and Translational Medicine, 2023, 13(12): e1499. https://doi.org/10.1002/ctm2.1499

[76]

Drakhlis, L., Biswanath, S., Farr, C. M., Lupanow, V., Teske, J., Ritzenhoff, K., Franke, A., Manstein, F., Bolesani, E., Kempf, H. et al. Human heart-forming organoids recapitulate early heart and foregut development. Nature Biotechnology, 2021, 39: 737–746. https://doi.org/10.1038/s41587-021-00815-9

[77]
Murphy, S. V., Atala, A. 3D bioprinting of tissues and organs. Nature Biotechnology, 2014 , 32(8): 773–785. https://doi.org/10.1038/nbt.2958
[78]

Park, S. E., Georgescu, A., Huh, D. Organoids-on-a-chip. Science, 2019, 364: 960–965, https://doi.org/10.1126/science.aaw7894

[79]

Homan, K. A., Gupta, N., Kroll, K. T., Kolesky, D. B., Skylar-Scott, M., Miyoshi, T., Mau, D., Valerius, M. T., Ferrante, T., Bonventre, J. V. et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nature Methods, 2019, 16: 255–262. https://doi.org/10.1038/s41592-019-0325-y

[80]

Grebenyuk, S., Ranga, A. Engineering organoid vascularization. Frontiers in Bioengineering and Biotechnology, 2019, 7: 39. https://doi.org/10.3389/fbioe.2019.00039

[81]

Cunha, A. B., Hou, J., Schuelke, C. Machine learning for stem cell differentiation and proliferation classification on electrical impedance spectroscopy. Journal of Electrical Bioimpedance, 2019, 10(1): 124–132. https://doi.org/10.2478/joeb-2019-0018

[82]

Wang, H., Li, X., You, X., Zhao, G. Harnessing the power of artificial intelligence for human living organoid research. Bioactive Materials, 2024, 42: 140–164. https://doi.org/10.1016/j.bioactmat.2024.08.027

[83]

Kegeles, E., Naumov, A., Karpulevich, E. A., Volchkov, P., Baranov, P. Convolutional neural networks can predict retinal differentiation in retinal organoids. Frontiers in Cellular Neuroscience, 2020, 14: 171. https://doi.org/10.3389/fncel.2020.00171

[84]

Park, K., Lee, J. Y., Lee, S. Y., Jeong, I., Park, S. Y., Kim, J. W., Nam, S. A., Kim, H. W., Kim, Y. K., Lee, S. Deep learning predicts the differentiation of kidney organoids derived from human induced pluripotent stem cells. Kidney Research and Clinical Practice, 2023, 42(1): 75–85. https://doi.org/10.23876/j.krcp.22.017

[85]

Kanda, G. N., Tsuzuki, T., Terada, M., Sakai, N., Motozawa, N., Masuda, T., Nishida, M., Watanabe, C. T., Higashi, T., Horiguchi, S. A. et al. Robotic search for optimal cell culture in regenerative medicine. eLife, 2022, 11: e77007. https://doi.org/10.7554/eLife.77007

Cell Organoid
Cite this article:
Liu J, Shi Y, Shen X, et al. Evolving from organoid to assembloid with enhanced cellular interactions. Cell Organoid, 2025, https://doi.org/10.26599/CO.2025.9410010
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return