In this study, we propose a novel method to reconstruct the 3D shapes of transparent objects using images captured by handheld cameras under natural lighting conditions. It combines the advantages of an explicit mesh and multi-layer perceptron (MLP) network as a hybrid representation to simplify the capture settings used in recent studies. After obtaining an initial shape through multi-view silhouettes, we introduced surface-based local MLPs to encode the vertex displacement field (VDF) for reconstructing surface details. The design of local MLPs allowed representation of the VDF in a piecewise manner using two-layer MLP networks to support the optimization algorithm. Defining local MLPs on the surface instead of on the volume also reduced the search space. Such a hybrid representation enabled us to relax the ray–pixel correspondences that represent the light path constraint to our designed ray–cell correspondences, which significantly simplified the implementation of a single-image-based environment-matting algorithm. We evaluated our representation and reconstruction algorithm on several transparent objects based on ground truth models. The experimental results show that our method produces high-quality reconstructions that are superior to those of state-of-the-art methods using a simplified data-acquisition setup.
Kutulakos, K. N.; Steger, E. A theory of refractive and specular 3D shape by light-path triangulation. International Journal of Computer Vision Vol. 76, No. 1, 13–29, 2008.
Wu, B.; Zhou, Y.; Qian, Y.; Cong, M.; Huang, H. Full 3D reconstruction of transparent objects. ACM Transactions on Graphics Vol. 37, No. 4, Article No. 103, 2018.
Ihrke, I.; Kutulakos, K. N.; Lensch, H. P. A.; Magnor, M.; Heidrich, W. Transparent and specular object reconstruction. Computer Graphics Forum Vol. 29, No. 8, 2400–2426, 2010.
Lyu, J.; Wu, B.; Lischinski, D.; Cohen-Or, D.; Huang, H. Differentiable refraction-tracing for mesh reconstruction of transparent objects. ACM Transactions on Graphics Vol. 39, No. 6, Article No. 195, 2020.
Chen, A.; Wu, M.; Zhang, Y.; Li, N.; Lu, J.; Gao, S.; Yu, J. Deep surface light fields. Proceedings of the ACM on Computer Graphics and Interactive Techniques Vol. 1, No. 1, Article No. 14, 2018.
Schwartzburg, Y.; Testuz, R.; Tagliasacchi, A.; Pauly, M. High-contrast computational caustic design. ACM Transactions on Graphics Vol. 33, No. 4, Article No. 74, 2014.
Yue, Y.; Iwasaki, K.; Chen, B. Y.; Dobashi, Y.; Nishita, T. Poisson-based continuous surface generation for goal-based caustics. ACM Transactions on Graphics Vol. 33, No. 3, Article No. 31, 2014.
Morris, N. J. W.; Kutulakos, K. N. Dynamic refraction stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 33, No. 8, 1518–1531, 2011.
Li, T. M.; Aittala, M.; Durand, F.; Lehtinen, J. Differentiable Monte Carlo ray tracing through edge sampling. ACM Transactions on Graphics Vol. 37, No. 6, Article No. 222, 2018.
Laine, S.; Hellsten, J.; Karras, T.; Seol, Y.; Lehtinen, J.; Aila, T. Modular primitives for high-performance differentiable rendering. ACM Transactions on Graphics Vol. 39, No. 6, Article No. 194, 2020.
Nimier-David, M.; Vicini, D.; Zeltner, T.; Jakob, W. Mitsuba 2: A retargetable forward and inverse renderer. ACM Transactions on Graphics Vol. 38, No. 6, Article No. 203, 2019.
Li, T. M.; Aittala, M.; Durand, F.; Lehtinen, J. Differentiable Monte Carlo ray tracing through edge sampling. ACM Transactions on Graphics Vol. 37, No. 6, Article No. 222, 2018.
Li, T. M.; Lehtinen, J.; Ramamoorthi, R.; Jakob, W.; Durand, F. Anisotropic Gaussian mutations for metropolis light transport through Hessian-Hamiltonian dynamics. ACM Transactions on Graphics Vol. 34, No. 6, Article No. 209, 2015.
Luan, F.; Zhao, S.; Bala, K.; Gkioulekas, I. Langevin Monte Carlo rendering with gradient-based adaptation. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 140, 2020.
Zhang, C.; Miller, B.; Yan, K.; Gkioulekas, I.; Zhao, S. Path-space differentiable rendering. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 143, 2020.
Zhang, C.; Wu, L.; Zheng, C.; Gkioulekas, I.; Ramamoorthi, R.; Zhao, S. A differential theory of radiative transfer. ACM Transactions on Graphics Vol. 38, No. 6, Article No. 227, 2019.
Bangaru, S. P.; Li, T. M.; Durand, F. Unbiased warped-area sampling for differentiable rendering. ACM Transactions on Graphics Vol. 39, No. 6, Article No. 245, 2020.
Porter, T.; Duff, T. Compositing digital images. ACM SIGGRAPH Computer Graphics Vol. 18, No. 3, 253–259, 1984.
Levin, A.; Lischinski, D.; Weiss, Y. A closed-form solution to natural image matting. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 30, No. 2, 228–242, 2008.
Duan, Q.; Cai, J.; Zheng, J. Compressive environment matting. The Visual Computer Vol. 31, No. 12, 1587–1600, 2015.
Kutulakos, K. N.; Seitz, S. M. A theory of shape by space carving. International Journal of Computer Vision Vol. 38, No. 3, 199–218, 2000.
Crane, K.; Weischedel, C.; Wardetzky, M. The heat method for distance computation. Communications of the ACM Vol. 60, No. 11, 90–99, 2017.
Schnabel, R.; Wahl, R.; Klein, R. Efficient RANSAC for point-cloud shape detection. Computer Graphics Forum Vol. 26, No. 2, 214–226, 2007.
Born, M.; Wolf, E.; Hecht, E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. Physics Today Vol. 53, No. 10, 77–78, 2000.
Zitová, B.; Flusser, J. Image registration methods: A survey. Image and Vision Computing Vol. 21, No. 11, 977–1000, 2003.
Nicolet, B.; Jacobson, A.; Jakob, W. Large steps in inverse rendering of geometry. ACM Transactions on Graphics Vol. 40, No. 6, Article No. 248, 2021.