PDF (949.8 KB)
Collect
Submit Manuscript
Article | Open Access

A comparative study of energy system transformation toward carbon neutrality in BRICS nations

Danwei Zhang1Runxin Yu1Xiaodan Huang1()Kaiwei Zhu2()
Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China
Research Institute of Carbon Neutrality, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
Show Author Information

Abstract

BRICS nations, accounting for around 45% of global greenhouse gas emissions, have committed to reach carbon neutrality: Brazil and South Africa by 2050, China and Russia by 2060, and India by 2070. In this study, we use a computable general equilibrium model of the world economy to simulate energy system transformation pathways toward net zero, and compare their technological and economic implications. The results show that achieving carbon neutrality necessitates a significant increase in electrification and non-fossil fuel use, with 65% to 82% of energy to be supplied from renewables and 55% to 80% in form of electricity. The study also underscores the essential role of carbon capture and removal technologies, which are expected to contribute 27% to 64% of emission reductions after 2030 across BRICS. The mitigation costs vary by country, ranging from 250 to 390 USD per tonne of CO2 by the carbon neutrality year. Annual investments in the energy sector are projected to be equivalent to 0.8%–3.5% of GDP.

References

[2]
Energy Institute. (2023). Statistical Review of World Energy. https://www.energyinst.org/__data/assets/pdf_file/0004/1055542/EI_Stat_Review_PDF_single_3.pdf.
[3]
Crippa, M., Guizzardi, D., Schaaf, E., Monforti, F. F., Quadrelli, R., Risquez, M. A., Rossi, S., Vignati, E., Muntean, M., Brandao, D. M. J., et al. (2023). GHG emissions of all world countries, Publications Office of the European Union.
[4]

Camarasa, C., Mata, É., Navarro, J. P. J., Reyna, J., Bezerra, P., Angelkorte, G. B., Feng, W., Filippidou, F., Forthuber, S., Harris, C., et al. (2022). A global comparison of building decarbonization scenarios by 2050 towards 1.5–2 ℃ targets. Nature Communications, 13: 3077.

[5]

Lei, T., Wang, D., Yu, X., Ma, S., Zhao, W., Cui, C., Meng, J., Tao, S., Guan, D. (2023). Global iron and steel plant CO2 emissions and carbon-neutrality pathways. Nature, 622: 514–520.

[6]

Cheng, D., Reiner, D. M., Yang, F., Cui, C., Meng, J., Shan, Y., Liu, Y., Tao, S., Guan, D. (2023). Projecting future carbon emissions from cement production in developing countries. Nature Communications, 14: 8213.

[7]

He, J., Li, Z., Zhang, X., Wang, H., Dong, W., Du, E., Chang, S., Ou, X., Guo, S., Tian, Z., et al. (2022). Towards carbon neutrality: A study on China’s long-term low-carbon transition pathways and strategies. Environmental Science and Ecotechnology, 9: 100134.

[8]
Zhang, X.L., Huang, X.D., Zhang, D., Geng, Y., Tian, L.X., Fan, Y., Chen, W.Y. (2022). Research on the pathway and policies for China’s energy and economy transformation toward carbon neutrality. Journal of Management World, 38(1): 35–66. (In Chinese)
[9]

Zhang, S., Chen, W. (2022). Assessing the energy transition in China towards carbon neutrality with a probabilistic framework. Nature Communications, 13: 87.

[10]

Cui, R. Y., Hultman, N., Cui, D., McJeon, H., Yu, S., Edwards, M. R., Sen, A., Song, K., Bowman, C., Clarke, L., et al. (2021). A plant-by-plant strategy for high-ambition coal power phaseout in China. Nature Communications, 12: 1468.

[11]

Wang, Y., Liu, J., Tang, X., Wang, Y., An, H., Yi, H. (2023). Decarbonization pathways of China’s iron and steel industry toward carbon neutrality. Resources, Conservation and Recycling, 194: 106994.

[12]

Liu, D., Wang, P., Sun, Y., Zhang, H., Xu, S. (2024). Co-abatement of carbon and air pollutants emissions in China’s iron and steel industry under carbon neutrality scenarios. Renewable and Sustainable Energy Reviews, 191: 114140.

[13]

Dinga, C. D., Wen, Z. (2022). China’s green deal: Can China’s cement industry achieve carbon neutral emissions by 2060. Renewable and Sustainable Energy Reviews, 155: 111931.

[14]

Tan, C., Yu, X., Guan, Y. (2022). A technology-driven pathway to net-zero carbon emissions for China’s cement industry. Applied Energy, 325: 119804.

[15]

Chen, H., Wang, L., Chen, W. (2019). Modeling on building sector’s carbon mitigation in China to achieve the 1.5℃ climate target. Energy Efficiency, 12: 483–496.

[16]
Yuan, Z. Y., Li, Z. Y., Kang, L. P., Tan, X. Y., Zhou, X. J., Li, X. J., Li, C., Peng, T. D., Ou, X. M. (2021). A review of low-carbon measurements and transition pathway of transport sector in China. Climate Change Research, 17(1): 27–35. (In Chinese)
[17]

Gulagi, A., Ram, M., Bogdanov, D., Sarin, S., Mensah, T. N. O., Breyer, C. (2022). The role of renewables for rapid transitioning of the power sector across states in India. Nature Communications, 13: 5499.

[18]
Hof, A. F., Dagnachew, A. G. (2020). Paris-aligned energy transition pathways for India. PBL Netherlands Environmental Assessment Agency.
[19]
FICCI. (2023). India’s energy-transition pathways: A net-zero perspective.
[20]

Lawrenz, L., Xiong, B., Lorenz, L., Krumm, A., Hosenfeld, H., Burandt, T., Löffler, K., Oei, P. Y., Von Hirschhausen, C. (2018). Exploring energy pathways for the low-carbon transformation in India—A model-based analysis. Energies, 11: 3001.

[21]
IEA. (2023). Transitioning India’s road transport sector—Realizing climate and air quality benefits. https://www.iea.org/reports/transitioning-indias-road-transport-sector.
[22]

Hossain, M. S., Fang, Y. R., Ma, T., Huang, C., Peng, W., Urpelainen, J., Hebbale, C., Dai, H. (2023). Narrowing fossil fuel consumption in the Indian road transport sector towards reaching carbon neutrality. Energy Policy, 172: 113330.

[23]

Gupta, D., Garg, A. (2020). Sustainable development and carbon neutrality: Integrated assessment of transport transitions in India. Transportation Research Part D: Transport and Environment, 85: 102474.

[24]

Mallett, A., Pal, P. (2022). Green transformation in the iron and steel industry in India: Rethinking patterns of innovation. Energy Strategy Reviews, 44: 100968.

[25]

Safonov, G., Potashnikov, V., Lugovoy, O., Safonov, M., Dorina, A., Bolotov, A. (2020). The low carbon development options for Russia. Climatic Change, 162: 1929–1945.

[26]

Sharmina, M. (2017). Low-carbon scenarios for Russia’s energy system: A participative backcasting approach. Energy Policy, 104: 303–315.

[27]
Information on https://cenef-xxi.ru/en.
[28]
The Brazilian Center for International Relations. (2023). Carbon neutrality 2050: scenarios for an efficient transition in Brazil. https://www.cebri.org/media/documentos/arquivos/PTE_RelatorioFinal_EN_5JUN.pdf.
[29]

Köberle, A. C., Rochedo, P. R. R., Lucena, A. F. P., Szklo, A., Schaeffer, R. (2020). Brazil’s emission trajectories in a well-below 2 ℃ world: The role of disruptive technologies versus land-based mitigation in an already low-emission energy system. Climatic Change, 162: 1823–1842.

[30]
Costa, K. G. V. (2024). The key-sectors for a low-carbon transition in the Brazilian economy. IE-UFRJ.
[31]

Rochedo, P. R. R., Soares-Filho, B., Schaeffer, R., Viola, E., Szklo, A., Lucena, A. F. P., Koberle, A., Davis, J. L., Rajão, R., Rathmann, R. (2018). The threat of political bargaining to climate mitigation in Brazil. Nature Climate Change, 8: 695–698.

[32]

De Souza, J. F. T., de Oliveira, B. P., Ferrer, J. T. V., Pacca, S. A. (2018). Industrial low carbon futures: A regional marginal abatement cost curve for Sao Paulo, Brazil. Journal of Cleaner Production, 200: 680–686.

[33]

De Souza, J. F. T., Almeida Pacca, S. (2023). A low carbon future for Brazilian steel and cement: A joint assessment under the circular economy perspective. Resources, Conservation & Recycling Advances, 17: 200141.

[34]

Menezes, E., Maia, A. G., de Carvalho, C. S. (2017). Effectiveness of low-carbon development strategies: Evaluation of policy scenarios for the urban transport sector in a Brazilian megacity. Technological Forecasting and Social Change, 114: 226–241.

[35]

Altieri, K. E., Trollip, H., Caetano, T., Hughes, A., Merven, B., Winkler, H. (2016). Achieving development and mitigation objectives through a decarbonization development pathway in South Africa. Climate Policy, 16: S78–S91.

[36]
Wright, J. G., Bischof-Niemz, T., Calitz, J., Mushwana, C., Van Heerden, R., Senatla M. (2017). Formal comments on the integrated resource plan (IRP) update assumptions, base case and observations 2016. https://www.csir.co.za/sites/default/files/Documents/20170331CSIR_EC_DOE.pdf.
[37]
[38]

Oyewo, A. S., Aghahosseini, A., Ram, M., Lohrmann, A., Breyer, C. (2019). Pathway towards achieving 100% renewable electricity by 2050 for South Africa. Solar Energy, 191: 549–565.

[39]
International Development Finance Club (IDFC). (2022). IDFC green finance mapping report 2022. https://www.idfc.org/wp-content/uploads/2022/11/idfc-gfm-2022-full-report-final.pdf.
[40]
IRENA, CPI. (2023). Global landscape of renewable energy finance 2023. International Renewable Energy Agency. https://www.irena.org/Publications/2023/Feb/Global-landscape-of-renewable-energy-finance-2023.
[41]

Jiang, K. J., Zhuang, X., He, C. M., Liu, J., Xu, X. Y., Chen, S. (2016). China’s low-carbon investment pathway under the 2 ℃ scenario. Advances in Climate Change Research, 7(4): 229–234.

[42]

Qi, Y., Liu, T., Jing, L. (2023). China’s energy transition towards carbon neutrality with minimum cost. Journal of Cleaner Production, 388: 135904.

[43]
[44]

Gupta, D., Ghersi, F., Vishwanathan, S. S., Garg, A. (2019). Achieving sustainable development in India along low carbon pathways: Macroeconomic assessment. World Development, 123: 104623.

[45]
Singh, V. P., Sidhu, G. (2021). Investment sizing India’s 2070 net-zero target. https://www.ceew.in/cef/solutions-factory/publications/CEEW-CEF-Investment-Sizing-India%E2%80%99s-2070-Net-Zero-Target.pdf.
[46]

Sampene, A., Li, C., Agyeman, F., Brenya, R. (2021). Analysis of the BRICS countries’ pathways towards a low-carbon environment. BRICS Journal of Economics, 2: 77–102.

[47]

Huang, X., Chang, S., Zheng, D., Zhang, X. (2020). The role of BECCS in deep decarbonization of China’s economy: A computable general equilibrium analysis. Energy Economics, 92: 104968.

[48]

Zhao, M., Huang, X., Kjellstrom, T., Lee, J. K. W., Otto, M., Zhang, X., Romanello, M., Zhang, D., Cai, W. (2022). Labour productivity and economic impacts of carbon mitigation: A modelling study and benefit–cost analysis. The Lancet Planetary Health, 6: e941–e948.

[49]

Zhang, D., Huang, X. D., Zhong, J. T., Guo, L. F., Guo, S. Y., Wang, D. Y., Miao, C. H., Zhang, X. L., Zhang, X. Y. (2023). A representative CO2 emissions pathway for China toward carbon neutrality under the Paris Agreement’s 2 ℃ target. Advances in Climate Change Research, 14: 941–951.

[50]
United Nations (2024). World population prospects 2024. https://population.un.org/wpp/.
[51]
Aguiar, A., Chepeliev, M., Corong, E., McDougall, R., van der Mensbrugghe, D. (2019). The GTAP data base: Version 10. Journal of Global Economic Analysis, 4(1): 1–27. https://www.jgea.org/ojs/index.php/jgea/article/view/77.
[52]
World Bank Group. World Bank national accounts data, OECD National Accounts data files. GDP growth (annual %). https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG.
[53]
OECD. (2022). World Energy Outlook 2022. https://doi.org/10.1787/3a469970-en.
[54]

Luderer, G., Vrontisi, Z., Bertram, C., Edelenbosch, O. Y., Pietzcker, R. C., Rogelj, J., De Boer, H. S., Drouet, L., Emmerling, J., Fricko, O., et al. (2018). Residual fossil CO2 emissions in 1.5–2 ℃ pathways. Nature Climate Change, 8: 626–633.

Energy and Climate Management
Article number: 9400002
Cite this article:
Zhang D, Yu R, Huang X, et al. A comparative study of energy system transformation toward carbon neutrality in BRICS nations. Energy and Climate Management, 2025, 1(2): 9400002. https://doi.org/10.26599/ECM.2025.9400002
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return