BRICS nations, accounting for around 45% of global greenhouse gas emissions, have committed to reach carbon neutrality: Brazil and South Africa by 2050, China and Russia by 2060, and India by 2070. In this study, we use a computable general equilibrium model of the world economy to simulate energy system transformation pathways toward net zero, and compare their technological and economic implications. The results show that achieving carbon neutrality necessitates a significant increase in electrification and non-fossil fuel use, with 65% to 82% of energy to be supplied from renewables and 55% to 80% in form of electricity. The study also underscores the essential role of carbon capture and removal technologies, which are expected to contribute 27% to 64% of emission reductions after 2030 across BRICS. The mitigation costs vary by country, ranging from 250 to 390 USD per tonne of CO2 by the carbon neutrality year. Annual investments in the energy sector are projected to be equivalent to 0.8%–3.5% of GDP.
Camarasa, C., Mata, É., Navarro, J. P. J., Reyna, J., Bezerra, P., Angelkorte, G. B., Feng, W., Filippidou, F., Forthuber, S., Harris, C., et al. (2022). A global comparison of building decarbonization scenarios by 2050 towards 1.5–2 ℃ targets. Nature Communications, 13: 3077.
Lei, T., Wang, D., Yu, X., Ma, S., Zhao, W., Cui, C., Meng, J., Tao, S., Guan, D. (2023). Global iron and steel plant CO2 emissions and carbon-neutrality pathways. Nature, 622: 514–520.
Cheng, D., Reiner, D. M., Yang, F., Cui, C., Meng, J., Shan, Y., Liu, Y., Tao, S., Guan, D. (2023). Projecting future carbon emissions from cement production in developing countries. Nature Communications, 14: 8213.
He, J., Li, Z., Zhang, X., Wang, H., Dong, W., Du, E., Chang, S., Ou, X., Guo, S., Tian, Z., et al. (2022). Towards carbon neutrality: A study on China’s long-term low-carbon transition pathways and strategies. Environmental Science and Ecotechnology, 9: 100134.
Zhang, S., Chen, W. (2022). Assessing the energy transition in China towards carbon neutrality with a probabilistic framework. Nature Communications, 13: 87.
Cui, R. Y., Hultman, N., Cui, D., McJeon, H., Yu, S., Edwards, M. R., Sen, A., Song, K., Bowman, C., Clarke, L., et al. (2021). A plant-by-plant strategy for high-ambition coal power phaseout in China. Nature Communications, 12: 1468.
Wang, Y., Liu, J., Tang, X., Wang, Y., An, H., Yi, H. (2023). Decarbonization pathways of China’s iron and steel industry toward carbon neutrality. Resources, Conservation and Recycling, 194: 106994.
Liu, D., Wang, P., Sun, Y., Zhang, H., Xu, S. (2024). Co-abatement of carbon and air pollutants emissions in China’s iron and steel industry under carbon neutrality scenarios. Renewable and Sustainable Energy Reviews, 191: 114140.
Dinga, C. D., Wen, Z. (2022). China’s green deal: Can China’s cement industry achieve carbon neutral emissions by 2060. Renewable and Sustainable Energy Reviews, 155: 111931.
Tan, C., Yu, X., Guan, Y. (2022). A technology-driven pathway to net-zero carbon emissions for China’s cement industry. Applied Energy, 325: 119804.
Chen, H., Wang, L., Chen, W. (2019). Modeling on building sector’s carbon mitigation in China to achieve the 1.5℃ climate target. Energy Efficiency, 12: 483–496.
Gulagi, A., Ram, M., Bogdanov, D., Sarin, S., Mensah, T. N. O., Breyer, C. (2022). The role of renewables for rapid transitioning of the power sector across states in India. Nature Communications, 13: 5499.
Lawrenz, L., Xiong, B., Lorenz, L., Krumm, A., Hosenfeld, H., Burandt, T., Löffler, K., Oei, P. Y., Von Hirschhausen, C. (2018). Exploring energy pathways for the low-carbon transformation in India—A model-based analysis. Energies, 11: 3001.
Hossain, M. S., Fang, Y. R., Ma, T., Huang, C., Peng, W., Urpelainen, J., Hebbale, C., Dai, H. (2023). Narrowing fossil fuel consumption in the Indian road transport sector towards reaching carbon neutrality. Energy Policy, 172: 113330.
Gupta, D., Garg, A. (2020). Sustainable development and carbon neutrality: Integrated assessment of transport transitions in India. Transportation Research Part D: Transport and Environment, 85: 102474.
Mallett, A., Pal, P. (2022). Green transformation in the iron and steel industry in India: Rethinking patterns of innovation. Energy Strategy Reviews, 44: 100968.
Safonov, G., Potashnikov, V., Lugovoy, O., Safonov, M., Dorina, A., Bolotov, A. (2020). The low carbon development options for Russia. Climatic Change, 162: 1929–1945.
Sharmina, M. (2017). Low-carbon scenarios for Russia’s energy system: A participative backcasting approach. Energy Policy, 104: 303–315.
Köberle, A. C., Rochedo, P. R. R., Lucena, A. F. P., Szklo, A., Schaeffer, R. (2020). Brazil’s emission trajectories in a well-below 2 ℃ world: The role of disruptive technologies versus land-based mitigation in an already low-emission energy system. Climatic Change, 162: 1823–1842.
Rochedo, P. R. R., Soares-Filho, B., Schaeffer, R., Viola, E., Szklo, A., Lucena, A. F. P., Koberle, A., Davis, J. L., Rajão, R., Rathmann, R. (2018). The threat of political bargaining to climate mitigation in Brazil. Nature Climate Change, 8: 695–698.
De Souza, J. F. T., de Oliveira, B. P., Ferrer, J. T. V., Pacca, S. A. (2018). Industrial low carbon futures: A regional marginal abatement cost curve for Sao Paulo, Brazil. Journal of Cleaner Production, 200: 680–686.
De Souza, J. F. T., Almeida Pacca, S. (2023). A low carbon future for Brazilian steel and cement: A joint assessment under the circular economy perspective. Resources, Conservation & Recycling Advances, 17: 200141.
Menezes, E., Maia, A. G., de Carvalho, C. S. (2017). Effectiveness of low-carbon development strategies: Evaluation of policy scenarios for the urban transport sector in a Brazilian megacity. Technological Forecasting and Social Change, 114: 226–241.
Altieri, K. E., Trollip, H., Caetano, T., Hughes, A., Merven, B., Winkler, H. (2016). Achieving development and mitigation objectives through a decarbonization development pathway in South Africa. Climate Policy, 16: S78–S91.
Oyewo, A. S., Aghahosseini, A., Ram, M., Lohrmann, A., Breyer, C. (2019). Pathway towards achieving 100% renewable electricity by 2050 for South Africa. Solar Energy, 191: 549–565.
Jiang, K. J., Zhuang, X., He, C. M., Liu, J., Xu, X. Y., Chen, S. (2016). China’s low-carbon investment pathway under the 2 ℃ scenario. Advances in Climate Change Research, 7(4): 229–234.
Qi, Y., Liu, T., Jing, L. (2023). China’s energy transition towards carbon neutrality with minimum cost. Journal of Cleaner Production, 388: 135904.
Gupta, D., Ghersi, F., Vishwanathan, S. S., Garg, A. (2019). Achieving sustainable development in India along low carbon pathways: Macroeconomic assessment. World Development, 123: 104623.
Sampene, A., Li, C., Agyeman, F., Brenya, R. (2021). Analysis of the BRICS countries’ pathways towards a low-carbon environment. BRICS Journal of Economics, 2: 77–102.
Huang, X., Chang, S., Zheng, D., Zhang, X. (2020). The role of BECCS in deep decarbonization of China’s economy: A computable general equilibrium analysis. Energy Economics, 92: 104968.
Zhao, M., Huang, X., Kjellstrom, T., Lee, J. K. W., Otto, M., Zhang, X., Romanello, M., Zhang, D., Cai, W. (2022). Labour productivity and economic impacts of carbon mitigation: A modelling study and benefit–cost analysis. The Lancet Planetary Health, 6: e941–e948.
Zhang, D., Huang, X. D., Zhong, J. T., Guo, L. F., Guo, S. Y., Wang, D. Y., Miao, C. H., Zhang, X. L., Zhang, X. Y. (2023). A representative CO2 emissions pathway for China toward carbon neutrality under the Paris Agreement’s 2 ℃ target. Advances in Climate Change Research, 14: 941–951.
Luderer, G., Vrontisi, Z., Bertram, C., Edelenbosch, O. Y., Pietzcker, R. C., Rogelj, J., De Boer, H. S., Drouet, L., Emmerling, J., Fricko, O., et al. (2018). Residual fossil CO2 emissions in 1.5–2 ℃ pathways. Nature Climate Change, 8: 626–633.