AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (9.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Molybdate intercalated nickel–iron-layered double hydroxide derived Mo-doped nickel–iron phosphide nanoflowers for efficient oxygen evolution reaction

Ruru Fu1Caihong Feng1Qingze Jiao1,2Kaixuan Ma1Suyu Ge1Yun Zhao1( )
Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
School of Materials and Environment, Beijing Institute of Technology, Zhuhai 519085, China
Show Author Information

Graphical Abstract

Abstract

The design of a highly efficient electrocatalyst for oxygen evolution reaction (OER) is of great significance to the clean energy conversion system. Herein, novel Mo-doped NiFe phosphide (Mo-NiFe-P) nanoflowers are developed as robust high-activity catalysts for OER via the phosphidation of MoO42− intercalated NiFe-layered double hydroxide (NiFe-LDH). The introduction of high valence Mo can significantly promote the catalytic activity of OER because of the strong electronic interactions with Ni and Fe. By tailoring the amount of molybdate intercalated into NiFe-LDH, the optimal phosphide shows outstanding overpotentials of 261 and 272 mV to drive current densities of 50 and 100 mA cm−2 in 1 mol L−1 KOH. This work demonstrates that the amount of molybdate influences the structure of phosphide prepared by the intercalated LDHs and also affects the electrocatalytic behavior. In addition, density functional theory (DFT) calculations show that introducing Mo could alter the intrinsic electronic structure of NiFe-P, which, in turn, could accelerate the reaction kinetics. This approach could be extended to the preparation of other cost-efficient phosphides for OER.

Electronic Supplementary Material

Download File(s)
EMD-2023-0002_ESM.pdf (2.1 MB)

References

[1]

Zhang, Y. Q., Liu, H. B., Ge, R. Y., Yang, J., Li, S. A., Liu, Y., Feng, L. Y., Li, Y., Zhu, M. Y., Li, W. X. (2022). Mo-induced in-situ architecture of NixCoyP/Co2P heterostructure nano-networks on nickel foam as bifunctional electrocatalysts for overall water splitting. Sustain. Mater. Technol. 33, e00461.

[2]

Zhang, B., Yang, F., Liu, X. D., Wu, N., Che, S., Li, Y. F. (2021). Phosphorus doped nickel-molybdenum aerogel for efficient overall water splitting. Appl. Catal. B: Envioron. 298, 120494.

[3]

Wang, P. C., Jia, T., Wang, B. G. (2020). A critical review: 1D/2D nanostructured self-supported electrodes for electrochemical water splitting. J. Power Sources. 474, 228621.

[4]

Ye, L., Zhang, Y. Q., Wang, L. M., Zhao, L. X., Gong, Y. Q. (2021). Assembly of ZIF-67 nanoparticles and in situ grown Cu(OH)2 nanowires serves as an effective electrocatalyst for oxygen evolution. Dalton Trans. 50, 7256–7264.

[5]

Zhang, H., Li, P., Chen, S. L., Xie, F., Riley, D. J. (2021). Anodic transformation of a core-shell prussian blue analogue to a bifunctional electrocatalyst for water splitting. Adv. Funct. Mater. 31, 2106835.

[6]

Wei, B., Xu, G. C., Hei, J. C., Zhang, L., Huang, T. T. (2021). PBA derived FeCoP nanoparticles decorated on NCNFs as efficient electrocatalyst for water splitting. Int. J. Hydrogen Energy. 46, 2225–2235.

[7]

Yu, J., Tian, Y. M., Lin, Z. W., Liu, Q., Liu, J. Y., Chen, R. R., Zhang, H. S., Wang, J. (2021). NiSe2/Ni5P4 nanosheets on nitrogen-doped carbon nano-fibred skeleton for efficient overall water splitting. Colloids Surf. A: Physicochem. Eng. Aspects. 614, 126189.

[8]

Zhang, R. Z., Zhang, C. M., Chen, W. (2016). FeP embedded in N, P dual-doped porous carbon nanosheets: an efficient and durable bifunctional catalyst for oxygen reduction and evolution reactions. J. Mater. Chem. A. 4, 18723–18729.

[9]

Wu, S., Wang, X. Y., Bai, J. L., Zhu, Y. Q., Yu, X., Qin, F., He, P. Y., Ren, L. L. (2022). Influence of nitrogen-doped carbon quantum dots on the electrocatalytic performance of the CoP nanoflower catalyst for OER. Langmuir. 38, 11210–11218.

[10]

Jiang, Y. Y., Lu, Y. Z., Lin, J. Y., Wang, X., Shen, Z. X. (2018). Water splitting: a hierarchical MoP nanoflake array supported on ni foam: a bifunctional electrocatalyst for overall water splitting (small methods 5/2018). Small Methods. 2, 1800028.

[11]

Thiyagarajan, D., Gao, M. Y., Sun, L., Dong, X. C., Zheng, D. H., Wahab, A., Will, G., Lin, J. J. (2022). Nanoarchitectured porous Cu-CoP nanoplates as electrocatalysts for efficient oxygen evolution reaction. Chem. Eng. J. 432, 134303.

[12]

Liu, X., Huang, J., Li, T. T., Chen, W., Chen, G. L., Han, L. T., Ostrikov, K. (2022). High-efficiency oxygen evolution catalyzed by Sn–Co–Ni phosphide with oriented crystal phases. J. Mater. Chem. A. 10, 13448–13455.

[13]

Wang, T., Xu, M., Li, F. R., Li, Y. J., Chen, W. L. (2021). Multimetal-based nitrogen doped carbon nanotubes bifunctional electrocatalysts for triiodide reduction and water-splitting synthesized from polyoxometalate- intercalated layered double hydroxide pyrolysis strategy. Appl. Catal. B: Environ. 280, 119421.

[14]

Wan, L., Zhao, Z. H., Chen, X. X., Liu, P. F., Wang, P. C., Xu, Z., Lin, Y. Q., Wang, B. G. (2020). Controlled synthesis of bifunctional NiCo2O4@FeNi LDH core–shell nanoarray air electrodes for rechargeable zinc–air batteries. ACS Sustain. Chem. Eng. 8, 11079–11087.

[15]

Han, N., Zhao, F. P., Li, Y. G. (2015). Ultrathin nickel–iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation. J. Mater. Chem. A. 3, 16348–16353.

[16]

Ma, L. J., Wang, Q., Islam, S. M., Liu, Y. C., Ma, S. L., Kanatzidis, M. G. (2016). Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS42– ion. J. Am. Chem. Soc. 138, 2858–2866.

[17]

Xie, C., Wang, Y. Y., Hu, K., Tao, L., Huang, X. B., Huo, J., Wang, S. Y. (2017). In situ confined synthesis of molybdenum oxide decorated nickel–iron alloy nanosheets from MoO42− intercalated layered double hydroxides for the oxygen evolution reaction. J. Mater. Chem. A. 5, 87–91.

[18]

Ma, J. M., Xia, J. L., Liang, Z., Chen, X. Y., Du, Y. P., Yan, C. H. (2021). Layered double hydroxide hollowcages with adjustable layer spacing for high performance hybrid supercapacitor. Small. 17, 2104423.

[19]

Li, L., Cao, X. J., Huo, J. J., Qu, J. P., Chen, W. H., Liu, C. T., Zhao, Y. F., Liu, H., Wang, G. X. (2023). High valence metals engineering strategies of Fe/Co/Ni-based catalysts for boosted OER electrocatalysis. J. Energy Chem. 76, 195–213.

[20]

Gong, X. F., Zhong, H. H., Estudillo-Wong, L. A., Alonso-Vante, N., Feng, Y. J., Li, D. Q. (2022). Bifunctional oxygen electrode cobalt–nickel sulfides catalysts originated from intercalated LDH precursors. J. Energy Chem. 74, 376–386.

[21]

Li, X. T., Liu, Y. Z., Sun, Q. D., Huangfu, Z. W., Huang, W. H., Wang, Z. L., Chueh, C. C., Chen, C. L., Zhu, Z. L. (2022). Effects of cationic and anionic defects on NiFe LDH in electrocatalytic oxygen evolution. ACS Sustain. Chem. Eng. 10, 14474–14485.

[22]

Yan, H. J., Wang, J. H., Zhang, Y., Hu, W. B. (2016). Preparation and inhibition properties of molybdate intercalated ZnAlCe layered double hydroxide. J. Alloys Compd. 678, 171–178.

[23]

Nejati, K., Akbari, A. R., Davari, S., Asadpour-Zeynali, K., Rezvani, Z. (2018). Zn–Fe-layered double hydroxide intercalated with vanadate and molybdate anions for electrocatalytic water oxidation. New J. Chem. 42, 2889–2895.

[24]

Frost, R. L., Musumeci, A. W., Martens, W. N., Adebajo, M. O., Bouzaid, J. (2005). Raman spectroscopy of hydrotalcites with sulphate, molybdate and chromate in the interlayer. J. Raman Spectrosc. 36, 925–931.

[25]

Krishnan, C. V., Garnett, M., Hsiao, B., Chu, B. (2007). Electrochemical measurements of isopolyoxomolybdates: 1. pH dependent behavior of sodium molybdate. Int. J. Electrochem. Sci. 2, 29–51.

[26]

Klimova, T. E., Valencia, D., Mendoza-Nieto, J. A., Hernández-Hipólito, P. (2013). Behavior of NiMo/SBA-15 catalysts prepared with citric acid in simultaneous hydrodesulfurization of dibenzothiophene and 4, 6-dimethyldibenzothiophene. J. Catal. 304, 29–46.

[27]

Thenrajan, T., Nagappan, S., Kundu, S., Wilson, J. (2023). Nickel iron based layered double hydroxides as effective electrochemical sensor towards epicatechin. Inorg. Chem. Commun. 153, 110861.

[28]

Wang, R. Y., Yu, Y. J., Zhang, R. J., Ren, X. H., Guo, W. L. (2022). Vacancy-rich structure inducing efficient persulfate activation for tetracycline degradation over Ni-Fe layered double hydroxide nanosheets. Sep. Purif. Technol. 289, 120663.

[29]

Thao, N. T., Trung, N. D., Van Long, D. (2016). Activity of molybdate-intercalated layered double hydroxides in the oxidation of styrene with air. Catal. Lett. 146, 918–928.

[30]

Li, W. F., Jiang, Y., Li, Y. R., Gao, Q., Shen, W., Jiang, Y. M., He, R. X., Li, M. (2021). Electronic modulation of CoP nanoarrays by Cr-doping for efficient overall water splitting. Chem. Eng. J. 425, 130651.

[31]

Luo, Y. X., Qiu, W. B., Liang, R. P., Xia, X. H., Qiu, J. D. (2020). Mo-doped FeP nanospheres for artificial nitrogen fixation. ACS Appl. Mater. Interfaces. 12, 17452–17458.

[32]

Su, L., Du, H. F., Tang, C., Nan, K. K., Wu, J. G., Li, C. M. (2018). Borate-ion intercalated Ni-Fe layered double hydroxide to simultaneously boost mass transport and charge transfer for catalysis of water oxidation. J. Colloid Interface Sci. 528, 36–44.

[33]

Xue, X. Y., Yu, F., Li, J. G., Bai, G., Yuan, H. F., Hou, J., Peng, B. H., Chen, L., Yuen, M. F., Wang, G., et al. (2020). Polyoxometalate intercalated NiFe layered double hydroxides for advanced water oxidation. Int. J. Hydrogen Energy. 45, 1802–1809.

[34]

Chen, J. X., Long, Q. W., Xiao, K., Ouyang, T., Li, N., Ye, S. Y., Liu, Z. Q. (2021). Vertically-interlaced NiFeP/MXene electrocatalyst with tunable electronic structure for high-efficiency oxygen evolution reaction. Sci. Bull. 66, 1063–1072.

[35]

Wang, M., Pyeon, M., Gönüllü, Y., Kaouk, A., Shen, S. H., Guo, L. J., Mathur, S. (2015). Constructing Fe2O3/TiO2 core–shell photoelectrodes for efficient photoelectrochemical water splitting. Nanoscale. 7, 10094–10100.

[36]

Wei, X. J., Zhang, Y. H., He, H. C., Peng, L., Xiao, S. H., Yao, S. R., Xiao, P. (2019). Carbon-incorporated porous honeycomb NiCoFe phosphide nanospheres derived from a MOF precursor for overall water splitting. Chem. Commun. 55, 10896–10899.

[37]

Xie, M., Jia, K., Lu, J. N., Zhao, R. D. (2020). Bi-functional Mo and P co-doped ZnCo-LDH nanosheets as high performance electrocatalysts for boosting overall water splitting. CrystEngComm. 22, 546–553.

[38]

Zhao, G. Y., Wang, B., Yan, Q., Xia, X. H. (2022). Mo-doping-assisted electrochemical transformation to generate CoFe LDH as the highly efficient electrocatalyst for overall water splitting. J. Alloys Compd. 902, 163738.

[39]

Li, S. M., Bai, L., Shi, H. B., Hao, X. F., Chen, L., Qin, X. J., Shao, G. J. (2021). Mo-doped CoP nanosheets as high-performance electrocatalyst for HER and OER. Ionics. 27, 3109–3118.

[40]

Tang, Y., Zou, Z. J., Wu, X. G., Zuo, P. F., Wang, L., Huang, G. W., Zhu, J., Zhong, S. L. (2023). ZIF-67@POM hybrid-derived unique willow-shaped two-dimensional Mo-CoP nanostructures as efficient electrocatalysts for the oxygen evolution reaction. New J. Chem. 47, 9887–9893.

[41]

Fu, R. R., Jiao, X. G., Yu, J. A., Jiao, Q. Z., Feng, C. H., Zhao, Y. (2023). Mo-doped CoFeP/nitrogen doped carbon porous nanocubes for alkaline hydrogen production. J. Electroanal. Chem. 930, 117137.

[42]

Fu, R. R., Jiao, Q. Z., Yang, C., Jiao, X. G., Zhang, X. G., Feng, C. H., Li, H. S., Zhang, Y. Y., Zhao, Y. (2023). CoFeP/NC@CoP/Ni2P heterostructure for efficient overall water splitting. New J. Chem. 47, 1226–1233.

[43]

Smith, R. D. L., Prévot, M. S., Fagan, R. D., Trudel, S., Berlinguette, C. P. (2013). Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 135, 11580–11586.

[44]

Yin, Z. X., Zhu, C. L., Li, C. Y., Zhang, S., Zhang, X. T., Chen, Y. J. (2016). Hierarchical nickel–cobalt phosphide yolk–shell spheres as highly active and stable bifunctional electrocatalysts for overall water splitting. Nanoscale. 8, 19129–19138.

[45]

Wu, M. L., Cui, M. J., Wu, L. P., Hwang, S., Yang, C. P., Xia, Q. Q., Zhong, G., Qiao, H. Y., Gan, W. T., Wang, X. X., et al. (2020). Hierarchical polyelemental nanoparticles as bifunctional catalysts for oxygen evolution and reduction reactions. Adv. Energy Mater. 10, 2001119.

[46]

Wang, X., Mao, Z. L., Mao, X., Hu, X. M., Gao, F. Y., Gao, M. R., Wu, Q. L., Lyu, X., Du, A. J., Xu, X. S., et al. (2023). Dual integrating oxygen and sulphur on surface of CoTe nanorods triggers enhanced oxygen evolution reaction. Adv. Sci. 10, 2206204.

[47]

Zhang, L. L., Rong, J., Yang, Y. Q., Zhu, H. Z., Yu, X. H., Chen, C. L., Cheng, H. M., Liu, G. (2023). Activated FeS2@NiS2 core–shell structure boosting cascade reaction for superior electrocatalytic oxygen evolution. Small. 19, 2207472.

[48]

Zeng, F., Mebrahtu, C., Liao, L. F., Beine, A. K., Palkovits, R. (2022). Stability and deactivation of OER electrocatalysts: a review. J. Energy Chem. 69, 301–329.

[49]

Jiang, J., Lu, S., Wang, W. K., Huang, G. X., Huang, B. C., Zhang, F., Zhang, Y. J., Yu, H. Q. (2018). Ultrahigh electrocatalytic oxygen evolution by iron-nickel sulfide nanosheets/reduced graphene oxide nanohybrids with an optimized autoxidation process. Nano Energy. 43, 300–309.

[50]

Wang, X. L., Yang, M., Feng, W., Qiao, L., An, X. G., Kong, Q. Q., Liu, X. N., Wang, Y., Liu, Y. H., Li, T., et al. (2021). Significantly enhanced oxygen evolution reaction performance by tuning surface states of Co through Cu modification in alloy structure. J. Electroanal. Chem. 903, 115823.

[51]

Tian, H., Wang, X. D., Li, H. Y., Pi, M. Y., Zhang, D. K., Chen, S. J. (2020). Superhydrophilic Al-doped NiP2 nanosheets as efficient electrocatalysts for hydrogen evolution reaction. Energy Technol. 8, 1900936.

[52]

Xu, R., Wu, R., Shi, Y. M., Zhang, J. F., Zhang, B. (2016). Ni3Se2 nanoforest/Ni foam as a hydrophilic, metallic, and self-supported bifunctional electrocatalyst for both H2 and O2 generations. Nano Energy. 24, 103–110.

[53]

Lian, Y. B., Sun, H., Wang, X. B., Qi, P. W., Mu, Q. Q., Chen, Y. J., Ye, J., Zhao, X. H., Deng, Z., Peng, Y. (2019). Carved nanoframes of cobalt-iron bimetal phosphide as a bifunctional electrocatalyst for efficient overall water splitting. Chem. Sci. 10, 464–474.

[54]

Fu, R. R., Jiao, Q. Z., Feng, X. T., Zhu, H. H., Yang, C., Feng, C. H., Li, H. S., Zhang, Y. Y., Shi, D. X., Wu, Q., et al. (2022). Metal-organic frameworks derived Ni5P4/NC@CoFeP/NC composites for highly efficient oxygen evolution reaction. J. Colloid Interface Sci. 617, 585–593.

[55]

Wang, X. Q., Wang, B., Chen, Y. F., Wang, M. Y., Wu, Q., Srinivas, K., Yu, B., Zhang, X. J., Ma, F., Zhang, W. L. (2022). Fe2P nanoparticles embedded on Ni2P nanosheets as highly efficient and stable bifunctional electrocatalysts for water splitting. J. Mater. Sci. Technol. 105, 266–273.

[56]

Wen, Y., Qi, J. Y., Wei, P. C., Kang, X., Li, X. (2021). Design of Ni3N/Co2N heterojunctions for boosting electrocatalytic alkaline overall water splitting. J. Mater. Chem. A. 9, 10260–10269.

[57]

Li, R. Q., Wang, B. L., Gao, T., Zhang, R., Xu, C. Y., Jiang, X. F., Zeng, J. J., Bando, Y., Hu, P. F., Li, Y. L., et al. (2019). Monolithic electrode integrated of ultrathin NiFeP on 3D strutted graphene for bifunctionally efficient overall water splitting. Nano Energy. 58, 870–876.

[58]

Jeung, Y., Jung, H., Kim, D., Roh, H., Lim, C., Han, J. W., Yong, K. (2021). 2D-structured V-doped Ni(Co, Fe) phosphides with enhanced charge transfer and reactive sites for highly efficient overall water splitting electrocatalysts. J. Mater. Chem. A. 9, 12203–12213.

[59]

Chu, H. Q., Feng, P. P., Jin, B. W., Ye, G., Cui, S. S., Zheng, M., Zhang, G. X., Yang, M. (2022). In-situ release of phosphorus combined with rapid surface reconstruction for Co–Ni bimetallic phosphides boosting efficient overall water splitting. Chem. Eng. J. 433, 133523.

[60]

Xi, W. G., Yan, G., Lang, Z. L., Ma, Y. Y., Tan, H. Q., Zhu, H. T., Wang, Y. H., Li, Y. G. (2018). Oxygen-doped nickel iron phosphide nanocube arrays grown on Ni foam for oxygen evolution electrocatalysis. Small. 14, 1802204.

Energy Materials and Devices
Article number: 9370002
Cite this article:
Fu R, Feng C, Jiao Q, et al. Molybdate intercalated nickel–iron-layered double hydroxide derived Mo-doped nickel–iron phosphide nanoflowers for efficient oxygen evolution reaction. Energy Materials and Devices, 2023, 1(1): 9370002. https://doi.org/10.26599/EMD.2023.9370002

4030

Views

834

Downloads

7

Crossref

Altmetrics

Received: 02 August 2023
Revised: 06 September 2023
Accepted: 09 September 2023
Published: 26 September 2023
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return