AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Weakly solvating electrolytes for next-generation lithium batteries: design principles and recent advances

Zhijie WangBiao Zhang( )
Department of Applied Physics & Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
Show Author Information

Graphical Abstract

Abstract

Lithium (Li) batteries are major players in the power source market of electric vehicles and portable electronic devices. Electrolytes are critical to determining the performance of Li batteries. Conventional electrolytes fall behind the ever-growing demands for fast-charging, wide-temperature operation, and safety properties of Li batteries. Despite the great success of (localized) high-concentration electrolytes, they still suffer from disadvantages, such as low ionic conductivity and high cost. Weakly solvating electrolytes (WSEs), also known as low-solvating electrolytes, offer another solution to these challenges, and they have attracted intensive research interests in recent years. This contribution reviews the working mechanisms, design principles, and recent advances in the development of WSEs. A summary and perspective regarding future research directions in this field is also provided. The insights will benefit academic and industrial communities in the design of safe and high-performance next-generation Li batteries.

References

[1]

Winter, M., Barnett, B., Xu, K. (2018). Before Li ion batteries. Chem. Rev. 118, 11433–11456.

[2]

Li, M., Lu, J., Chen, Z. W., Amine, K. (2018). 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561.

[3]

Piao, N., Gao, X. N., Yang, H. C., Guo, Z. Q., Hu, G. J., Cheng, H. M., Li, F. (2022). Challenges and development of lithium-ion batteries for low temperature environments. eTransportation. 11, 100145.

[4]

Xie, W. L., Liu, X. H., He, R., Li, Y. L., Gao, X. L., Li, X. H., Peng, Z. X., Feng, S. W., Feng, X. N., Yang, S. C. (2020). Challenges and opportunities toward fast-charging of lithium-ion batteries. J. Energy Storage. 32, 101837.

[5]

Lin, D. C., Liu, Y. Y., Cui, Y. (2017). Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206.

[6]

Cheng, X. B., Zhang, R., Zhao, C. Z., Zhang, Q. (2017). Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473.

[7]

Wang, Z. J., Wang, Y. Y., Wu, C., Pang, W. K., Mao, J. F., Guo, Z. P. (2021). Constructing nitrided interfaces for stabilizing Li metal electrodes in liquid electrolytes. Chem. Sci. 12, 8945–8966.

[8]

Fan, X. L., Wang, C. S. (2021). High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem. Soc. Rev. 50, 10486–10566.

[9]

Zhang, J. G., Xu, W., Xiao, J., Cao, X., Liu, J. (2020). Lithium metal anodes with nonaqueous electrolytes. Chem. Rev. 120, 13312–13348.

[10]

Yamada, Y., Wang, J. H., Ko, S., Watanabe, E., Yamada, A. (2019). Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy. 4, 269–280.

[11]

Jie, Y. L., Ren, X. D., Cao, R. G., Cai, W. B., Jiao, S. H. (2020). Advanced liquid electrolytes for rechargeable Li metal batteries. Adv. Funct. Mater. 30, 1910777.

[12]

Tian, Z. N., Zou, Y. G., Liu, G., Wang, Y. Z., Yin, J., Ming, J., Alshareef, H. N. (2022). Electrolyte solvation structure design for sodium ion batteries. Adv. Sci. 9, 2201207.

[13]

Chapman, N., Borodin, O., Yoon, T., Nguyen, C. C., Lucht, B. L. (2017). Spectroscopic and density functional theory characterization of common lithium salt solvates in carbonate electrolytes for lithium batteries. J. Phys. Chem. C. 121, 2135–2148.

[14]

Liu, J. P., Yuan, B. T., Dong, L. L., Zhong, S. J., Ji, Y. P., Liu, Y. P., Han, J. C., Yang, C. H., He, W. D. (2022). Constructing low-solvation electrolytes for next-generation lithium-ion batteries. Batteries Supercaps. 5, e202200256.

[15]

Peng, L. S., Wu, X. K., Jia, M. M., Qian, W. W., Zhang, X. Y., Zhou, N., Zhang, L., Jian, C. Y., Zhang, S. J. (2022). Solvating power regulation enabled low concentration electrolyte for lithium batteries. Sci. Bull. 67, 2235–2244.

[16]

Qian, J. F., Henderson, W. A., Xu, W., Bhattacharya, P., Engelhard, M., Borodin, O., Zhang, J. G. (2015). High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362.

[17]

Chen, S. R., Zheng, J. M., Mei, D. H., Han, K. S., Engelhard, M. H., Zhao, W. G., Xu, W., Liu, J., Zhang, J. G. (2018). High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, 1706102.

[18]

Ren, X. D., Chen, S. R., Lee, H., Mei, D. H., Engelhard, M. H., Burton, S. D., Zhao, W. G., Zheng, J. M., Li, Q. Y., Ding, M. S., et al. (2018). Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem. 4, 1877–1892.

[19]
Li, Z. H., Yao, Y. X., Sun, S., Jin, C. B., Yao, N., Yan, C., Zhang, Q. (2023). 40 years of low-temperature electrolytes for rechargeable lithium batteries. Angew. Chem. Int. Ed. in press, https://doi.org/10.1002/anie.202303888.
[20]

Xu, K., von Cresce, A., Lee, U. (2010). Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir. 26, 11538–11543.

[21]

Weng, S. T., Zhang, X., Yang, G. J., Zhang, S. M., Ma, B. Y., Liu, Q. Y., Liu, Y., Peng, C. X., Chen, H. X., Yu, H. L., et al. (2023). Temperature-dependent interphase formation and Li+ transport in lithium metal batteries. Nat. Commun. 14, 4474.

[22]
Anslyn, E. V., Dougherty, D. A. (2005). Modern Physical Organic Chemistry. Sausalito: University Science.
[23]

Boyle, D. T., Kim, S. C., Oyakhire, S. T., Vilá, R. A., Huang, Z. J., Sayavong, P., Qin, J., Bao, Z. A., Cui, Y. (2022). Correlating kinetics to cyclability reveals thermodynamic origin of lithium anode morphology in liquid electrolytes. J. Am. Chem. Soc. 144, 20717–20725.

[24]

Boyle, D. T., Kong, X., Pei, A., Rudnicki, P. E., Shi, F. F., Huang, W., Bao, Z. N., Qin, J., Cui, Y. (2020). Transient voltammetry with ultramicroelectrodes reveals the electron transfer kinetics of lithium metal anodes. ACS Energy Lett. 5, 701–709.

[25]

Song, G., Yi, Z. L., Su, F. Y., Xie, L. J., Wang, Z. B., Wei, X. X., Xu, G. N., Chen, C. M. (2023). Boosting the low-temperature performance for Li-ion batteries in LiPF6-based local high-concentration electrolyte. ACS Energy Lett. 8, 1336–1343.

[26]

Wang, Z. J., Wang, Y. Y., Li, B. H., Bouwer, J. C., Davey, K., Lu, J., Guo, Z. P. (2022). Non-flammable ester electrolyte with boosted stability against Li for high-performance Li metal batteries. Angew. Chem. Int. Ed. 61, e202206682.

[27]
Jiang, Z. P., Mo, J. S., Li, C., Li, H. W., Zhang, Q. A., Zeng, Z. Q., Xie, J., Li, Y. T. Anion-regulated weakly solvating electrolytes for high-voltage lithium metal batteries. Energy Environ. Mater. in press, https://doi.org/10.1002/eem2.12440.
[28]

Schmeisser, M., Illner, P., Puchta, R., Zahl, A., van Eldik, R. (2012). Gutmann donor and acceptor numbers for ionic liquids. Chem. Eur. J. 18, 10969–10982.

[29]

Cataldo, F. (2015). A revision of the Gutmann donor numbers of a series of phosphoramides including TEPA. Eur. Chem. Bull. 4, 92–97.

[30]

Mao, M. L., Ji, X., Wang, Q. Y., Lin, Z. J., Li, M. Y., Liu, T., Wang, C. L., Hu, Y. S., Li, H., Huang, X. J., et al. (2023). Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nat. Commun. 14, 1082.

[31]

Schmid, R. (1983). Re-interpretation of the solvent dielectric constant in coordination chemical terms. J. Solution Chem. 12, 135–152.

[32]

Hall, D. S., Self, J., Dahn, J. R. (2015). Dielectric constants for quantum chemistry and Li-ion batteries: solvent blends of ethylene carbonate and ethyl methyl carbonate. J. Phys. Chem. C. 119, 22322–22330.

[33]

Xu, J. J., Zhang, J. X., Pollard, T. P., Li, Q. D., Tan, S., Hou, S., Wan, H. L., Chen, F., He, H. X., Hu, E. Y., et al. (2023). Electrolyte design for Li-ion batteries under extreme operating conditions. Nature. 614, 694–700.

[34]

Wu, Y. Z., Hu, Q., Liang, H. M., Wang, A. P., Xu, H., Wang, L., He, X. M. (2023). Electrostatic potential as solvent descriptor to enable rational electrolyte design for lithium batteries. Adv. Energy Mater. 13, 2300259.

[35]

Aurbach, D., Pollak, E., Elazari, R., Salitra, G., Kelley, C. S., Affinito, J. (2009). On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc. 156, A694–A702.

[36]

Liang, X., Wen, Z. Y., Liu, Y., Wu, M. F., Jin, J., Zhang, H., Wu, X. W. (2011). Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. J. Power Sources. 196, 9839–9843.

[37]

Zhang, X. Q., Chen, X., Hou, L. P., Li, B. Q., Cheng, X. B., Huang, J. Q., Zhang, Q. (2019). Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries. ACS Energy Lett. 4, 411–416.

[38]

Shi, Q. W., Zhong, Y. R., Wu, M., Wang, H. Z., Wang, H. L. (2018). High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes. Proc. Natl. Acad. Sci. USA. 115, 5676–5680.

[39]

Brown, Z. L., Heiskanen, S., Lucht, B. L. (2019). Using triethyl phosphate to increase the solubility of LiNO3 in carbonate electrolytes for improving the performance of the lithium metal anode. J. Electrochem. Soc. 166, A2523–A2527.

[40]

Liu, S. F., Ji, X., Piao, N., Chen, J., Eidson, N., Xu, J. J., Wang, P. F., Chen, L., Zhang, J. X., Deng, T., et al. (2021). An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angew. Chem. Int. Ed. 60, 3661–3671.

[41]

Liang, J. Y., Zhang, Y. Y., Xin, S., Tan, S. J., Meng, X. H., Wang, W. P., Shi, J. L., Wang, Z. B., Wang, F. Y., Wan, L. J., et al. (2023). Mitigating swelling of the solid electrolyte interphase using an inorganic anion switch for low-temperature lithium-ion batteries. Angew. Chem. Int. Ed. 62, e202300384.

[42]

Wu, J. R., Gao, Z. Y., Wang, Y., Yang, X., Liu, Q., Zhou, D., Wang, X. S., Kang, F. Y., Li, B. H. (2022). Electrostatic interaction tailored anion-rich solvation sheath stabilizing high-voltage lithium metal batteries. Nano-Micro Lett. 14, 147.

[43]

Xia, D. W., Kamphaus, E. P., Hu, A. Y., Hwang, S., Tao, L., Sainio, S., Nordlund, D., Fu, Y. B., Huang, H. B., Cheng, L., et al. (2023). Design criteria of dilute ether electrolytes toward reversible and fast intercalation chemistry of graphite anode in Li-ion batteries. ACS Energy Lett. 8, 1379–1389.

[44]

Liu, G., Cao, Z., Wang, P., Ma, Z., Zou, Y. G., Sun, Q. J., Cheng, H. R., Cavallo, L., Li, S. Y., Li, Q., Ming, J. (2022). Switching electrolyte interfacial model to engineer solid electrolyte interface for fast charging and wide-temperature lithium-ion batteries. Adv. Sci. 9, 2201893.

[45]

Sang, P. F., Si, Y. B., Tang, S., Guo, W., Fu, Y. Z. (2022). Thiolate-based electrolytes with anion-dominated solvation for highly stable lithium metal batteries. J. Phys. Chem. C. 126, 21181–21187.

[46]

Min, X. Q., Han, C. X., Zhang, S. H., Ma, J., Hu, N. F., Li, J. D., Du, X. F., Xie, B., Lin, H. J., Kuo, C. Y., et al. (2023). Highly oxidative-resistant cyano-functionalized lithium borate salt for enhanced cycling performance of practical lithium-ion batteries. Angew. Chem. Int. Ed. 62, e202302664.

[47]

Liu, X. W., Shen, X. H., Li, H., Li, P., Luo, L. B., Fan, H. M., Feng, X. M., Chen, W. H., Ai, X. P., Yang, H. X., et al. (2021). Ethylene carbonate-free propylene carbonate-based electrolytes with excellent electrochemical compatibility for Li-ion batteries through engineering electrolyte solvation structure. Adv. Energy Mater. 11, 2003905.

[48]

Li, S. Y., Xu, F., Zhang, N. S., Wang, P., Wang, J. (2022). Anions tuned solid electrolyte interphase in lithium-ion batteries. Batteries Supercaps. 5, e202100274.

[49]

Yao, Y. X., Chen, X., Yan, C., Zhang, X. Q., Cai, W. L., Huang, J. Q., Zhang, Q. (2021). Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60, 4090–4097.

[50]

Chen, Y., Wu, W. K., Gonzalez-Munoz, S., Forcieri, L., Wells, C., Jarvis, S. P., Wu, F. L., Young, R., Dey, A., Isaacs, M., et al. (2023). Nanoarchitecture factors of solid electrolyte interphase formation via 3D nano-rheology microscopy and surface force-distance spectroscopy. Nat. Commun. 14, 1321.

[51]

Pham, T. D., Faheem, A. B., Nguyen, H. D., Oh, H. M., Lee, K. K. (2022). Enhanced performances of lithium metal batteries by synergistic effect of low concentration bisalt electrolyte. J. Mater. Chem. A. 10, 12035–12046.

[52]

Sun, C. C., Ji, X., Weng, S. T., Li, R. H., Huang, X. T., Zhu, C. N., Xiao, X. Z., Deng, T., Fan, L. W., Chen, L. X., et al. (2022). 50C Fast-charge Li-ion batteries using a graphite anode. Adv. Mater. 34, 2206020.

[53]

Chen, J., Fan, X. L., Li, Q., Yang, H. B., Khoshi, M. R., Xu, Y. B., Hwang, S., Chen, L., Ji, X., Yang, C. Y., et al. (2020). Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy. 5, 386–397.

[54]

Liang, H. J., Su, M. Y., Zhao, X. X., Gu, Z. Y., Yang, J. L., Guo, W., Liu, Z. M., Zhang, J. P., Wu, X. L. (2023). Weakly-solvating electrolytes enable ultralow-temperature (−80 ℃) and high-power CFx/Li primary batteries. Sci. China Chem. 66, 1982–1988.

[55]

Zhou, J., Wang, Y. Y., Wang, J. W., Liu, Y., Li, Y. M., Cheng, L. W., Ding, Y., Dong, S., Zhu, Q. N., Tang, M. Y., et al. (2022). Low-temperature and high-rate sodium metal batteries enabled by electrolyte chemistry. Energy Storage Mater. 50, 47–54.

[56]

Tang, Z., Wang, H., Wu, P. F., Zhou, S. Y., Huang, Y. C., Zhang, R., Sun, D., Tang, Y. G., Wang, H. Y. (2022). Electrode–electrolyte interfacial chemistry modulation for ultra-high rate sodium-ion batteries. Angew. Chem. Int. Ed. 61, e202200475.

[57]

Zhang, J. M., Li, Q. P., Zeng, Y. P., Tang, Z., Sun, D., Huang, D., Tang, Y. E., Wang, H. Y. (2023). Weakly solvating cyclic ether electrolyte for high-voltage lithium metal batteries. ACS Energy Lett. 8, 1752–1761.

[58]

Park, E., Park, J., Lee, K., Zhao, Y., Zhou, T. H., Park, G., Jeong, M. G., Choi, M., Yoo, D. J., Jung, H. G., et al. (2023). Exploiting the steric effect and low dielectric constant of 1, 2-dimethoxypropane for 4. 3 V lithium metal batteries. ACS Energy Lett. 8, 179–188.

[59]
Liang, J. L., Sun, S. Y., Yao, N., Zheng, Z., Zhang, Q. K., Li, B. Q., Zhang, X. Q., Huang, J. Q. (2023). Regulating the electrolyte solvation structure by weakening the solvating power of solvents for stable lithium metal batteries. Sci. China Chem., in press, https://doi.org/10.1007/s11426-023-1730-x.
[60]

Ma, T., Ni, Y. X., Wang, Q. R., Zhang, W. J., Jin, S., Zheng, S. B., Yang, X., Hou, Y. P., Tao, Z. L., Chen, J. (2022). Optimize lithium deposition at low temperature by weakly solvating power solvent. Angew. Chem. Int. Ed. 61, e202207927.

[61]

Pham, T. D., Faheem, A. B., Kim, J., Oh, H. M., Lee, K. K. (2022). Practical high-voltage lithium metal batteries enabled by tuning the solvation structure in weakly solvating electrolyte. Small. 18, 2107492.

[62]

Pham, T. D., Lee, K. K. (2021). Simultaneous stabilization of the solid/cathode electrolyte interface in lithium metal batteries by a new weakly solvating electrolyte. Small. 17, 2100133.

[63]

Chen, Y. L., Yu, Z. A., Rudnicki, P., Gong, H. X., Huang, Z. J., Kim, S. C., Lai, J. C., Kong, X., Qin, J., Cui, Y., et al. (2021). Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery. J. Am. Chem. Soc. 143, 18703–18713.

[64]

Wang, Z. J., Chen, C. S., Wang, D. N., Zhu, Y., Zhang, B. (2023). Stabilizing interfaces in high-temperature NCM811-Li batteries via tuning terminal alkyl chains of ether solvents. Angew. Chem. Int. Ed. 62, e202303950.

[65]

Shoham, G., Lipscomb, W. N., Olsher, U. (1983). Crystal and molecular structure of benzo-13-crown-4 and its complex with lithium thiocyanate. J. Am. Chem. Soc. 105, 1247–1252.

[66]

Holoubek, J., Liu, H. D., Wu, Z. H., Yin, Y. J., Xing, X., Cai, G. R., Yu, S. C., Zhou, H. Y., Pascal, T. A., Chen, Z., et al. (2021). Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy. 6, 303–313.

[67]

Zhang, H., Zeng, Z. Q., Ma, F. F., Wu, Q., Wang, X. L., Cheng, S. J., Xie, J. (2023). Cyclopentylmethyl ether, a non-fluorinated, weakly solvating and wide temperature solvent for high-performance lithium metal battery. Angew. Chem. Int. Ed. 62, e202300771.

[68]

Li, Z., Rao, H., Atwi, R., Sivakumar, B. M., Gwalani, B., Gray, S., Han, K. S., Everett, T. A., Ajantiwalay, T. A., Murugesan, V., et al. (2023). Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries. Nat. Commun. 14, 868.

[69]

Wang, D. N., Du, X. Q., Zhang, B. (2022). Solvent molecular design to regulate the intercalation behavior in ether electrolyte for stable graphite anodes in potassium-ion batteries. Small Struct. 3, 2200078.

[70]

Yang, A. L., Yang, C., Xie, K., Xin, S., Xiong, Z., Li, K. Y., Guo, Y. G., You, Y. (2023). Benchmarking the safety performance of organic electrolytes for rechargeable lithium batteries: a thermochemical perspective. ACS Energy Lett. 8, 836–843.

[71]

Li, T., Zhang, X. Q., Shi, P., Zhang, Q. (2019). Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule. 3, 2647–2661.

[72]

Fan, L., Xie, H. B., Hu, Y. Y., Caixiang, Z. M., Rao, A. M., Zhou, J., Lu, B. A. (2023). A tailored electrolyte for safe and durable potassium ion batteries. Energy Environ. Sci. 16, 305–315.

[73]

Kang, G. H., Zhong, G., Ma, J. B., Yin, R., Cai, K. N., Jia, T. Q., Ren, X. L., Yu, K., Qin, P. W., Chen, Z., et al. (2022). Weakly solvated EC-free linear alkyl carbonate electrolytes for Ni-rich cathode in rechargeable lithium battery. iScience. 25, 105710.

[74]

Zheng, X. Y., Cao, Z., Luo, W., Weng, S. T., Zhang, X. L., Wang, D. H., Zhu, Z. L., Du, H. R., Wang, X. F., Qie, L., et al. (2023). Solvation and interfacial engineering enable −40℃ operation of graphite/NCM batteries at energy density over 270 Wh kg−1. Adv. Mater. 35, 2210115.

[75]

Zhang, W. N., Yang, T., Liao, X. B., Song, Y., Zhao, Y. (2023). All-fluorinated electrolyte directly tuned Li+ solvation sheath enabling high-quality passivated interfaces for robust Li metal battery under high voltage operation. Energy Storage Mater. 57, 249–259.

[76]

Cai, W. L., Deng, Y., Deng, Z. W., Jia, Y., Li, Z. H., Zhang, X. M., Xu, C. H. Y., Zhang, X. Q., Zhang, Y., Zhang, Q. (2023). Quasi-localized high-concentration electrolytes for high-voltage lithium metal batteries. Adv. Energy Mater. 13, 2301396.

[77]

Cao, Z., Zheng, X. Y., Zhou, M., Zhao, T., Lv, L. Z., Li, Y. C., Wang, Z. Q., Luo, W., Zheng, H. H. (2022). Electrolyte solvation engineering toward high-rate and low-temperature silicon-based batteries. ACS Energy Lett. 7, 3581–3592.

[78]

Yang, Y., Fang, Z., Yin, Y., Cao, Y. J., Wang, Y. G., Dong, X. L., Xia, Y. Y. (2022). Corrigendum: synergy of weakly-solvated electrolyte and optimized interphase enables graphite anode charge at low temperature. Angew. Chem. Int. Ed. 61, e202213688.

[79]

Xue, W. J., Huang, M. J., Li, Y. T., Zhu, Y. G., Gao, R., Xiao, X. H., Zhang, W. X., Li, S. P., Xu, G. Y., Yu, Y., et al. (2021). Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy. 6, 495–505.

[80]

Wang, Q. D., Yao, Z. P., Zhao, C. L., Verhallen, T., Tabor, D. P., Liu, M., Ooms, F., Kang, F. Y., Aspuru-Guzik, A., Hu, Y. S., et al. (2020). Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nat. Commun. 11, 4188.

[81]

Lu, Y., Zhang, W. L., Liu, S. Z., Cao, Q. B., Yan, S. S., Liu, H., Hou, W. H., Zhou, P., Song, X., Ou, Y., et al. (2023). Tuning the Li+ solvation structure by a “bulky coordinating” strategy enables nonflammable electrolyte for ultrahigh voltage lithium metal batteries. ACS Nano. 17, 9586–9599.

[82]
Mo, Y. B., Liu, G. P., Yin, Y., Tao, M. M., Chen, J. W., Peng, Y., Wang, Y. G., Yang, Y., Wang, C. X., Dong, X. L., et al. (2023). Fluorinated solvent molecule tuning enables fast-charging and low-temperature lithium-ion batteries. Adv. Energy Mater. in press, https://doi.org/10.1002/aenm.202301285.
[83]

Wu, J. Y., Zhou, T. Y., Zhong, B., Wang, Q., Liu, W., Zhou, H. H. (2022). Designing anion-derived solid electrolyte interphase in a siloxane-based electrolyte for lithium-metal batteries. ACS Appl. Mater. Interfaces. 14, 27873–27881.

[84]

Li, Y. Q., Liu, M. Z., Wang, K., Li, C. F., Lu, Y., Choudhary, A., Ottley, T., Bedrov, D., Xing, L. D., Li, W. S. (2023). Single-solvent-based electrolyte enabling a high-voltage lithium-metal battery with long cycle life. Adv. Energy Mater. 13, 2300918.

[85]

Amanchukwu, C. V., Yu, Z. A., Kong, X., Qin, J., Cui, Y., Bao, Z. N. (2020). A new class of ionically conducting fluorinated ether electrolytes with high electrochemical stability. J. Am. Chem. Soc. 142, 7393–7403.

[86]

Yu, Z. A., Wang, H. S., Kong, X., Huang, W., Tsao, Y., Mackanic, D. G., Wang, K. C., Wang, X. C., Huang, W. X., Choudhury, S., et al. (2020). Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy. 5, 526–533.

[87]

Wang, H. S., Yu, Z. A., Kong, X., Huang, W., Zhang, Z. W., Mackanic, D. G., Huang, X. Y., Qin, J., Bao, Z. N., Cui, Y. (2021). Dual-solvent Li-ion solvation enables high-Performance Li-metal batteries. Adv. Mater. 33, 2008619.

[88]

Yu, Z. A., Rudnicki, P. E., Zhang, Z. W., Huang, Z. J., Celik, H., Oyakhire, S. T., Chen, Y. L., Kong, X., Kim, S. C., Xiao, X., et al. (2022). Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy. 7, 94–106.

[89]

Zhou, T. H., Zhao, Y., El Kazzi, M., Choi, J. W., Coskun, A. (2022). Integrated ring-chain design of a new fluorinated ether solvent for high-voltage lithium-metal batteries. Angew. Chem. Int. Ed. 61, e202115884.

[90]

Zhao, Y., Zhou, T. H., Ashirov, T., Kazzi, M. E., Cancellieri, C., Jeurgens, L. P. H., Choi, J. W., Coskun, A. (2022). Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nat. Commun. 13, 2575.

[91]

Zhao, Y., Zhou, T. H., Mensi, M., Choi, J. W., Coskun, A. (2023). Electrolyte engineering via ether solvent fluorination for developing stable non-aqueous lithium metal batteries. Nat. Commun. 14, 299.

[92]

Zhao, Y., Zhou, T. H., Baster, D., El Kazzi, M., Choi, J. W., Coskun, A. (2023). Targeted functionalization of cyclic ether solvents for controlled reactivity in high-voltage lithium metal batteries. ACS Energy Lett. 8, 3180–3187.

[93]

Zhang, G. Z., Chang, J., Wang, L. G., Li, J. W., Wang, C. Y., Wang, R., Shi, G. L., Yu, K., Huang, W., Zheng, H. H., et al. (2023). A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries. Nat. Commun. 14, 1081.

[94]

Ogawa, Y., Tokunaga, E., Kobayashi, O., Hirai, K., Shibata, N. (2020). Current contributions of organofluorine compounds to the agrochemical industry. iScience. 23, 101467.

[95]

Kim, M. S., Zhang, Z. W., Rudnicki, P. E., Yu, Z. A., Wang, J. Y., Wang, H. S., Oyakhire, S. T., Chen, Y. L., Kim, S. C., Zhang, W. B., et al. (2022). Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nat. Mater. 21, 445–454.

[96]

Kim, M. S., Zhang, Z. W., Wang, J. Y., Oyakhire, S. T., Kim, S. C., Yu, Z. A., Chen, Y. L., Boyle, D. T., Ye, Y. S., Huang, Z. J., et al. (2023). Revealing the multifunctions of Li3N in the suspension electrolyte for lithium metal batteries. ACS Nano. 17, 3168–3180.

Energy Materials and Devices
Article number: 9370003
Cite this article:
Wang Z, Zhang B. Weakly solvating electrolytes for next-generation lithium batteries: design principles and recent advances. Energy Materials and Devices, 2023, 1(1): 9370003. https://doi.org/10.26599/EMD.2023.9370003

9679

Views

3374

Downloads

49

Crossref

Altmetrics

Received: 03 August 2023
Revised: 21 August 2023
Accepted: 23 August 2023
Published: 18 September 2023
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return