Journal Home > Volume 1 , Issue 1

The failure of Li metal anodes can be attributed to their unstable electrode/electrolyte interface, especially the continuous formation of solid electrolyte interphase (SEI) and dendrite growth. To address this challenge, scholars proposed the construction of artificial SEI (ASEI) as a promising strategy. The ASEI mainly homogenizes the distribution of Li+, mitigates dendrite growth, facilitates Li+ diffusion, and protects the Li metal anode from electrolyte erosion. This review comprehensively summarizes the recent progress in the construction of ASEI layers in terms of their chemical composition. Fundamental understanding of the mechanisms, design principles, and functions of the main components are analyzed. We also propose future research directions to facilitate the in-depth study of ASEI and its practical applications in Li metal batteries. This review offers perspectives that will greatly contribute to the design of practical Li metal electrodes.


menu
Abstract
Full text
Outline
About this article

Developing artificial solid-state interphase for Li metal electrodes: recent advances and perspective

Show Author's information Yanyan WangMingnan LiFuhua YangJianfeng MaoZaiping Guo( )
School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia

Abstract

The failure of Li metal anodes can be attributed to their unstable electrode/electrolyte interface, especially the continuous formation of solid electrolyte interphase (SEI) and dendrite growth. To address this challenge, scholars proposed the construction of artificial SEI (ASEI) as a promising strategy. The ASEI mainly homogenizes the distribution of Li+, mitigates dendrite growth, facilitates Li+ diffusion, and protects the Li metal anode from electrolyte erosion. This review comprehensively summarizes the recent progress in the construction of ASEI layers in terms of their chemical composition. Fundamental understanding of the mechanisms, design principles, and functions of the main components are analyzed. We also propose future research directions to facilitate the in-depth study of ASEI and its practical applications in Li metal batteries. This review offers perspectives that will greatly contribute to the design of practical Li metal electrodes.

Keywords: interfaces, artificial SEI, Li metal electrode, high-energy-density batteries

References(109)

[1]

Liu, Y. Y., Zhu, Y. Y., Cui, Y. (2019). Challenges and opportunities towards fast-charging battery materials. Nat. Energy. 4, 540–550.

[2]

Albertus, P., Babinec, S., Litzelman, S., Newman, A. (2018). Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy. 3, 16–21.

[3]

Zhang, Y., Zuo, T. T., Popovic, J., Lim, K., Yin, Y. X., Maier, J., Guo, Y. G. (2020). Towards better Li metal anodes: challenges and strategies. Mater. Today. 33, 56–74.

[4]

Wang, Z. J., Wang, Y. Y., Wu, C., Pang, W. K., Mao, J. F., Guo, Z. P. (2021). Constructing nitrided interfaces for stabilizing Li metal electrodes in liquid electrolytes. Chem. Sci. 12, 8945–8966.

[5]

Liu, B., Zhang, J. G., Xu, W. (2018). Advancing lithium metal batteries. Joule. 2, 833–845.

[6]

Zhang, W. C., Zhang, F. L., Liu, S. L., Pang, W. K., Lin, Z., Guo, Z. P., Chai, L. Y. (2023). Regulating the reduction reaction pathways via manipulating the solvation shell and donor number of the solvent in Li-CO2 chemistry. Proc. Natl. Acad. Sci. USA. 120, e2219692120.

[7]

Liu, W., Oh, P., Liu, X. E., Lee, M. J., Cho, W., Chae, S., Kim, Y., Cho, J. (2015). Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 54, 4440–4457.

[8]

Liu, J., Bao, Z. N., Cui, Y., Dufek, E. J., Goodenough, J. B., Khalifah, P., Li, Q. Y., Liaw, B. Y., Liu, P., Manthiram, A., et al. (2019). Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy. 4, 180–186.

[9]

Wang, Z. J., Wang, Y. Y., Li, B. H., Bouwer, J. C., Davey, K., Lu, J., Guo, Z. P. (2022). Non-flammable ester electrolyte with boosted stability against Li for high-performance Li metal batteries. Angew. Chem. Int. Ed. 61, e202206682.

[10]

Suo, L. M., Xue, W. J., Gobet, M., Greenbaum, S. G., Wang, C., Chen, Y. M., Yang, W. L., Li, Y. X., Li, J. (2018). Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl. Acad. Sci. USA. 115, 1156–1161.

[11]

Xu, W., Wang, J. L., Ding, F., Chen, X. L., Nasybulin, E., Zhang, Y. H., Zhang, J. G. (2014). Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537.

[12]

Cheng, X. B., Zhang, R., Zhao, C. Z., Wei, F., Zhang, J. G., Zhang, Q. (2016). A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213.

[13]

Cheng, X. B., Zhang, R., Zhao, C. Z., Zhang, Q. (2017). Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473.

[14]

Fang, C. C., Li, J. X., Zhang, M. H., Zhang, Y. H., Yang, F., Lee, J. Z., Lee, M. H., Alvarado, J., Schroeder, M. A., Yang, Y. Y. C., et al. (2019). Quantifying inactive lithium in lithium metal batteries. Nature. 572, 511–515.

[15]

Lin, D. C., Liu, Y. Y., Cui, Y. (2017). Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206.

[16]

Adenusi, H., Chass, G. A., Passerini, S., Tian, K. V., Chen, G. H. (2023). Lithium batteries and the solid electrolyte interphase (SEI)—progress and outlook. Adv. Energy Mater. 13, 2203307.

[17]

Qutaish, H., Han, S. A., Rehman, Y., Konstantinov, K., Park, M. S., Ho Kim, J. (2022). Porous carbon architectures with different dimensionalities for lithium metal storage. Sci. Technol. Adv. Mater. 23, 169–188.

[18]

Peled, E., Menkin, S. (2017). Review—SEI: past, present and future. J. Electrochem. Soc. 164, A1703–A1719.

[19]

Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418.

[20]

Wang, L. N., Menakath, A., Han, F. D., Wang, Y., Zavalij, P. Y., Gaskell, K. J., Borodin, O., Iuga, D., Brown, S. P., Wang, C. S., et al. (2019). Identifying the components of the solid–electrolyte interphase in Li-ion batteries. Nat. Chem. 11, 789–796.

[21]

Yu, X. W., Manthiram, A. (2018). Electrode–electrolyte interfaces in lithium-based batteries. Energy Environ. Sci. 11, 527–543.

[22]

Park, S., Chaudhary, R., Han, S. A., Qutaish, H., Moon, J., Park, M. S., Kim, J. H. (2023). Ionic conductivity and mechanical properties of the solid electrolyte interphase in lithium metal batteries. Energy Mater. 3, 300005.

[23]

Han, B., Zhang, Z., Zou, Y. C., Xu, K., Xu, G. Y., Wang, H., Meng, H., Deng, Y. H., Li, J., Gu, M. (2021). Poor stability of Li2CO3 in the solid electrolyte interphase of a lithium-metal anode revealed by cryo-electron microscopy. Adv. Mater. 33, 2100404.

[24]

Andersson, A. M., Abraham, D. P., Haasch, R., MacLaren, S., Liu, J., Amine, K. (2002). Surface characterization of electrodes from high power lithium-ion batteries. J. Electrochem. Soc. 149, A1358.

[25]

Zhang, X., Yang, Y. A., Zhou, Z. (2020). Towards practical lithium-metal anodes. Chem. Soc. Rev. 49, 3040–3071.

[26]

Zheng, X. Y., Cao, Z., Luo, W., Weng, S. T., Zhang, X. L., Wang, D. H., Zhu, Z. L., Du, H. R., Wang, X. F., Qie, L. et al. (2023). Solvation and interfacial engineering enable −40℃ operation of graphite/NCM batteries at energy density over 270 Wh kg−1. Adv. Mater. 35, 2210115.

[27]

Fan, X. L., Wang, C. S. (2021). High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem. Soc. Rev. 50, 10486–10566.

[28]

Wang, Z. J., Chen, C. S., Wang, D. N., Zhu, Y., Zhang, B. (2023). Stabilizing interfaces in high-temperature NCM811-Li batteries via tuning terminal alkyl chains of ether solvents. Angew. Chem. Int. Ed. 62, e202303950.

[29]

Huang, Y., Duan, J., Zheng, X. Y., Wen, J. Y., Dai, Y. M., Wang, Z. F., Luo, W., Huang, Y. H. (2020). Lithium metal-based composite: an emerging material for next-generation batteries. Matter. 3, 1009–1030.

[30]

Lyu, T. Y., Luo, F. Q., Wang, D. C., Bu, L. Z., Tao, L., Zheng, Z. F. (2022). Carbon/lithium composite anode for advanced lithium metal batteries: design, progress, in situ characterization, and perspectives. Adv. Energy Mater. 12, 2201493.

[31]

Chen, H., Yang, Y. F., Boyle, D. T., Jeong, Y. K., Xu, R., de Vasconcelos, L. S., Huang, Z. J., Wang, H. S., Wang, H. X., Huang, W. X., et al. (2021). Free-standing ultrathin lithium metal–graphene oxide host foils with controllable thickness for lithium batteries. Nat. Energy. 6, 790–798.

[32]

Zheng, Z. J., Ye, H., Guo, Z. P. (2020). Recent progress in designing stable composite lithium anodes with improved wettability. Adv. Sci. 7, 2002212.

[33]

Meyerson, M. L., Papa, P. E., Heller, A., Mullins, C. B. (2021). Recent developments in dendrite-free lithium-metal deposition through tailoring of micro- and nanoscale artificial coatings. ACS Nano. 15, 29–46.

[34]

Xu, R., Cheng, X. B., Yan, C., Zhang, X. Q., Xiao, Y., Zhao, C. Z., Huang, J. Q., Zhang, Q. (2019). Artificial interphases for highly stable lithium metal anode. Matter. 1, 317–344.

[35]

Jiang, C., Ma, C., Yang, F., Cai, X. H., Liu, Y. J., Tao, X. Y. (2021). Materials chemistry among the artificial solid electrolyte interphases of metallic lithium anodes. Mater. Chem. Front. 5, 5194–5210.

[36]

Gao, R. M., Yang, H., Wang, C. Y., Ye, H., Cao, F. F., Guo, Z. P. (2021). Fatigue-resistant interfacial layer for safe lithium metal batteries. Angew. Chem. Int. Ed. 60, 25508–25513.

[37]

Lu, G. X., Nai, J. W., Luan, D. Y., Tao, X. Y., Lou, X. W. (2023). Surface engineering toward stable lithium metal anodes. Sci. Adv. 9, eadf1550.

[38]

Kang, D. M., Xiao, M. Y., Lemmon, J. P. (2021). Artificial solid-electrolyte interphase for lithium metal batteries. Batteries Supercaps. 4, 445–455.

[39]

Monroe, C., Newman, J. (2003). Dendrite growth in lithium/polymer systems: a propagation model for liquid electrolytes under galvanostatic conditions. J. Electrochem. Soc. 150, A1377–A1384.

[40]

Li, N. W., Yin, Y. X., Yang, C. P., Guo, Y. G. (2016). An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 28, 1853–1858.

[41]

Kozen, A. C., Lin, C. F., Pearse, A. J., Schroeder, M. A., Han, X. G., Hu, L. B., Lee, S. B., Rubloff, G. W., Noked, M. (2015). Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano. 9, 5884–5892.

[42]

Cui, C., Zhang, R. P., Fu, C. K., Xiao, R., Li, R. L., Ma, Y. L., Wang, J. J., Gao, Y. Z., Yin, G. P., Zuo, P. J. (2022). Stable lithium anode enabled by biphasic hybrid SEI layer toward high-performance lithium metal batteries. Chem. Eng. J. 433, 133570.

[43]

Liang, X., Pang, Q., Kochetkov, I. R., Sempere, M. S., Huang, H., Sun, X. Q., Nazar, L. F. (2017). A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy. 2, 17119.

[44]

Chen, T., Meng, F. B., Zhang, Z. W., Liang, J. C., Hu, Y., Kong, W. H., Zhang, X. L., Jin, Z. (2020). Stabilizing lithium metal anode by molecular beam epitaxy grown uniform and ultrathin bismuth film. Nano Energy. 76, 105068.

[45]

Park, K., Goodenough, J. B. (2017). Dendrite-suppressed lithium plating from a liquid electrolyte via wetting of Li3N. Adv. Energy Mater. 7, 1700732.

[46]

Wu, N., Li, Y. T., Dolocan, A., Li, W., Xu, H. H., Xu, B. Y., Grundish, N. S., Cui, Z. M., Jin, H. B., Goodenough, J. B. (2020). In situ formation of Li3P layer enables fast Li+ conduction across li/solid polymer electrolyte interface. Adv. Funct. Mater. 30, 2000831.

[47]

Di, J., Yang, J. L., Tian, H., Ren, P. F., Deng, Y. R., Tang, W. H., Yan, W. Q., Liu, R. P., Ma, J. M. (2022). Dendrites-free lithium metal anode enabled by synergistic surface structural engineering. Adv. Funct. Mater. 32, 2200474.

[48]

Ma, Y., Wei, L., Gu, Y. T., Zhao, L., Jing, Y. X., Mu, Q. Q., Su, Y. H., Yuan, X. Z., Peng, Y., Deng, Z. (2021). Insulative ion-conducting lithium selenide as the artificial solid–electrolyte interface enabling heavy-duty lithium metal operations. Nano Lett. 21, 7354–7362.

[49]

Li, Y. B., Sun, Y. M., Pei, A., Chen, K. F., Vailionis, A., Li, Y. Z., Zheng, G. Y., Sun, J., Cui, Y. (2018). Robust pinhole-free Li3N solid electrolyte grown from molten lithium. ACS Cent. Sci. 4, 97–104.

[50]

Chen, H., Pei, A., Lin, D. C., Xie, J., Yang, A. K., Xu, J. W., Lin, K. X., Wang, J. Y., Wang, H. S., Shi, F. F., et al. (2019). Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode. Adv. Energy Mater. 9, 1900858.

[51]

Fan, X. L., Chen, L., Borodin, O., Ji, X., Chen, J., Hou, S., Deng, T., Zheng, J., Yang, C. Y., Liou, S. C., et al. (2018). Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13, 715–722.

[52]

Lu, Y. Y., Tu, Z. Y., Archer, L. A. (2014). Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969.

[53]

Liu, P., Su, H., Liu, Y., Zhong, Y., Xian, C. X., Zhang, Y. Q., Wang, X. L., Xia, X. H., Tu, J. P. (2022). LiBr–LiF-rich solid–electrolyte interface layer on lithiophilic 3D framework for enhanced lithium metal anode. Small Structures. 3, 2200010.

[54]

Ma, Y., Wu, F., Chen, N., Yang, T., Liang, Y., Sun, Z., Luo, G., Du, J., Shang, Y., Feng, M., et al. (2022). A dual functional artificial SEI layer based on a facile surface chemistry for stable lithium metal anode. Molecules. 27, 5199.

[55]

Chen, C., Liang, Q. W., Wang, G., Liu, D. D., Xiong, X. H. (2022). Grain-boundary-rich artificial SEI layer for high-rate lithium metal anodes. Adv. Funct. Mater. 32, 2107249.

[56]

Yang, Z., Liu, W., Chen, Q., Wang, X., Zhang, W., Zhang, Q., Zuo, J., Yao, Y., Gu, X., Si, K., et al. (2023). Ultrasmooth and dense lithium deposition toward high-performance lithium-metal batteries. Adv. Mater. 35, 2210130.

[57]

Ding, D., Zhang, B., Wang, L., Dou, J. M., Zhai, Y. J., Xu, L. Q. (2022). Flexible Mg3N2 layer regulates lithium plating-striping for stable and high capacity lithium metal anodes. Nano Res. 15, 8128–8135.

[58]

Zhang, Y., Liu, Y., Tan, L. G., Zhou, J. J., Ding, F., Wang, S. Y., Li, M. H., Li, H., Yi, C. Y. (2022). Collaborative assembly of a fluorine-enriched heterostructured solid electrolyte interphase for ultralong-life lithium metal batteries. ACS Appl. Mater. Interfaces. 14, 43917–43925.

[59]

Liu, H. J., Yang, C. Y., Han, M. C., Yu, C. Y., Li, X. F., Yu, Z. Z., Qu, J. (2023). In-situ constructing a heterogeneous layer on lithium metal anodes for dendrite-free lithium deposition and high Li-ion flux. Angew. Chem. Int. Ed. 62, e202217458.

[60]

Ha, S., Kim, D., Lim, H. K., Koo, C. M., Kim, S. J., Yun, Y. S. (2021). Lithiophilic MXene-guided lithium metal nucleation and growth behavior. Adv. Funct. Mater. 31, 2101261.

[61]

Yao, W., He, S. J., Xue, Y. C., Zhang, Q. F., Wang, J. S., He, M., Xu, J. G., Chen, C., Xiao, X. (2021). V2CTx MXene artificial solid electrolyte interphases toward dendrite-free lithium metal anodes. ACS Sustain. Chem. Eng. 9, 9961–9969.

[62]

Wang, S. Z., Chen, J. H., Lu, H. C., Zhang, Y., Yang, J., Nuli, Y. N., Wang, J. L. (2021). Artificial alloy/Li3N double-layer enabling stable high-capacity lithium metal anodes. ACS Appl. Energy Mater. 4, 13132–13139.

[63]

Du, P. Y., Nan, Y., Zhao, H. T., Guo, D. L., Li, B., Wu, S. J. (2021). Harnessing stiffness and anticorrosion of chromium in an artificial SEI to achieve a longevous lithium-metal anode. ACS Appl. Energy Mater. 4, 5043–5049.

[64]

Cao, S. L., He, X., Nie, L. L., Hu, J. W., Chen, M. L., Han, Y., Wang, K. L., Jiang, K., Zhou, M. (2022). CF4 plasma-generated LiF-Li2C2 artificial layers for dendrite-free lithium-metal anodes. Adv. Sci. 9, 2201147.

[65]

Yang, J., Hou, J. M., Fang, Z. X., Kashif, K., Chen, C., Li, X. R., Zhou, H. P., Zhang, S., Feng, T. T., Xu, Z. Q., et al. (2022). Simultaneously in-situ fabrication of lithium fluoride and sulfide enriched artificial solid electrolyte interface facilitates high stable lithium metal anode. Chem. Eng. J. 433, 133193.

[66]

Lee, D., Sun, S., Park, H., Kim, J., Park, K., Hwang, I., Jung, Y., Song, T., Paik, U. (2021). Stable artificial solid electrolyte interphase with lithium selenide and lithium chloride for dendrite-free lithium metal anodes. J. Power Sources. 506, 230158.

[67]

Cheng, Z. Z., Chen, Y., Shi, L., Wu, M. F., Wen, Z. Y. (2023). Long-lifespan lithium metal batteries enabled by a hybrid artificial solid electrolyte interface layer. ACS Appl. Mater. Interfaces. 15, 10585–10592.

[68]

Hu, A. J., Chen, W., Du, X. C., Hu, Y., Lei, T. Y., Wang, H. B., Xue, L. X., Li, Y. Y., Sun, H., Yan, Y. C., et al. (2021). An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 14, 4115–4124.

[69]

Liu, H. W., Zhang, J. F., Liu, Y., Wei, Y., Ren, S. Y., Pan, L. D., Su, Y., Xiao, J. H., Fan, H. Y., Lin, Y. T., et al. (2022). A flexible artificial solid-electrolyte interlayer supported by compactness-tailored carbon nanotube network for dendrite-free lithium metal anode. J. Energy Chem. 69, 421–427.

[70]

Zhao, F. F., Zhai, P. B., Wei, Y., Yang, Z. L., Chen, Q., Zuo, J. H., Gu, X. K., Gong, Y. J. (2022). Constructing artificial SEI layer on lithiophilic MXene surface for high-performance lithium metal anodes. Adv. Sci. 9, 2103930.

[71]

Zhai, P. B., Wang, T. S., Jiang, H. N., Wan, J. Y., Wei, Y., Wang, L., Liu, W., Chen, Q., Yang, W. W., Cui, Y., et al. (2021). 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator–metal–insulator layered heterostructures. Adv. Mater. 33, 2006247.

[72]

Wang, Z. J., Wang, Y. Y., Zhang, Z. H., Chen, X. W., Lie, W., He, Y. B., Zhou, Z., Xia, G. L., Guo, Z. P. (2020). Building artificial solid-electrolyte interphase with uniform intermolecular ionic bonds toward dendrite-free lithium metal anodes. Adv. Funct. Mater. 30, 2002414.

[73]

Zhong, Y., Huang, P., Yan, W., Su, Z., Sun, C., Xing, Y. M., Lai, C. (2022). Ion-conductive polytitanosiloxane networks enable a robust solid-electrolyte interface for long-cycling lithium metal anodes. Adv. Funct. Mater. 32, 2110347.

[74]

Beichel, W., Skrotzki, J., Klose, P., Njel, C., Butschke, B., Burger, S., Liu, L. L., Thomann, R., Thomann, Y., Biro, D., et al. (2022). An artificial SEI layer based on an inorganic coordination polymer with self-healing ability for long-lived rechargeable lithium-metal batteries. Batteries Supercaps. 5, e202100347.

[75]

Wang, Y. Y., Wang, Z. J., Zhao, L., Fan, Q. N., Zeng, X. H., Liu, S. L., Pang, W. K., He, Y. B., Guo, Z. P. (2021). Lithium metal electrode with increased air stability and robust solid electrolyte interphase realized by silane coupling agent modification. Adv. Mater. 33, 2008133.

[76]

Sun, Y. P., Zhao, Y., Wang, J. W., Liang, J. N., Wang, C. H., Sun, Q., Lin, X. T., Adair, K. R., Luo, J., Wang, D. W., et al. (2019). A novel organic “polyurea” thin film for ultralong-life lithium-metal anodes via molecular-layer deposition. Adv. Mater. 31, 1806541.

[77]

Li, X., Yuan, L. X., Liu, D. Z., Liao, M. Y., Chen, J., Yuan, K., Xiang, J. W., Li, Z., Huang, Y. H. (2021). Elevated lithium ion regulation by a “natural silk” modified separator for high-performance lithium metal anode. Adv. Funct. Mater. 31, 2100537.

[78]

Yang, Q. L., Li, W. L., Dong, C., Ma, Y. Y., Yin, Y. X., Wu, Q. B., Xu, Z. T., Ma, W., Fan, C., Sun, K. N. (2020). PIM-1 as an artificial solid electrolyte interphase for stable lithium metal anode in high-performance batteries. J. Energy Chem. 42, 83–90.

[79]

Zhang, C. H., Yang, Y. X., Sun, Y. J., Duan, L. L., Mei, Z. Y., An, Q., Jing, Q., Zhao, G. F., Guo, H. (2023). 2D sp2-carbon-linked covalent organic frameworks as artificial SEI film for dendrite-free lithium metal batteries. Sci. China Mater. 66, 2591–2600.

[80]

Chen, T., Wu, H. P., Wan, J., Li, M. X., Zhang, Y. C., Sun, L., Liu, Y. C., Chen, L. L., Wen, R., Wang, C. (2021). Synthetic poly-dioxolane as universal solid electrolyte interphase for stable lithium metal anodes. J. Energy Chem. 62, 172–178.

[81]

Yu, Q. P., Mai, W. C., Xue, W. J., Xu, G. Y., Liu, Q., Zeng, K., Liu, Y. M., Kang, F. Y., Li, B. H., Li, J. (2020). Sacrificial poly(propylene carbonate) membrane for dispersing nanoparticles and preparing artificial solid electrolyte interphase on Li metal anode. ACS Appl. Mater. Interfaces. 12, 27087–27094.

[82]

Gao, Y., Zhao, Y. M., Li, Y. C., Huang, Q. Q., Mallouk, T. E., Wang, D. H. (2017). Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries. J. Am. Chem. Soc. 139, 15288–15291.

[83]

Cui, X. M., Chu, Y., Wang, X. H., Zhang, X. Z., Li, Y. X., Pan, Q. M. (2021). Stabilizing lithium metal anodes by a self-healable and Li-regulating interlayer. ACS Appl. Mater. Interfaces. 13, 44983–44990.

[84]

Wang, D. D., Liu, H. X., Liu, F., Ma, G. R., Yang, J., Gu, X. D., Zhou, M., Chen, Z. (2021). Phase-separation-induced porous lithiophilic polymer coating for high-efficiency lithium metal batteries. Nano Lett. 21, 4757–4764.

[85]

Jin, T., Liu, M., Su, K., Lu, Y., Cheng, G., Liu, Y., Li, N. W., Yu, L. (2021). Polymer zwitterion-based artificial interphase layers for stable lithium metal anodes. ACS Appl. Mater. Interfaces. 13, 57489–57496.

[86]

Song, G., Hwang, C., Song, W. J., Lee, J. H., Lee, S., Han, D. Y., Kim, J., Park, H., Song, H. K., Park, S. (2022). Breathable artificial interphase for dendrite-free and chemo-resistive lithium metal anode. Small. 18, 2105724.

[87]

Li, S. M., Huang, J. L., Cui, Y., Liu, S. H., Chen, Z. R., Huang, W., Li, C. F., Liu, R. L., Fu, R. W., Wu, D. C. (2022). A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. Nat. Nanotechnol. 17, 613–621.

[88]

Chen, C., Zhang, J. M., Hu, B. R., Liang, Q. W., Xiong, X. H. (2023). Dynamic gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium metal anode. Nat. Commun. 14, 4018.

[89]

Hu, P., Chen, W., Wang, Y., Chen, T., Qian, X. H., Li, W. Q., Chen, J. Y., Fu, J. J. (2023). Fatigue-free and skin-like supramolecular ion-conductive elastomeric interphases for stable lithium metal batteries. ACS Nano. 17, 16239–16251.

[90]

Jiang, Z. P., Jin, L., Han, Z. L., Hu, W., Zeng, Z. Q., Sun, Y. L., Xie, J. (2019). Facile generation of polymer–alloy hybrid layers for dendrite-free lithium-metal anodes with improved moisture stability. Angew. Chem. Int. Ed. 58, 11374–11378.

[91]

Hu, Y. F., Li, Z. C., Wang, Z. P., Wang, X. L., Chen, W., Wang, J. C., Zhong, W. W., Ma, R. G. (2023). Suppressing local dendrite hotspots via current density redistribution using a superlithiophilic membrane for stable lithium metal anode. Adv. Sci. 10, 2206995.

[92]

Ma, W. C., Shi, Y. R., Jiang, J. L., Xu, Y., Liu, X. Y., Shen, C., Jiang, Y., Zhao, B., Zhang, J. J. (2022). Regulated lithium deposition behavior by chlorinated hybrid solid-electrolyte-interphase for stable lithium metal anode. Chem. Eng. J. 442, 136297.

[93]

Guan, M. R., Huang, Y. X., Meng, Q. Q., Zhang, B. T., Chen, N., Li, L., Wu, F., Chen, R. J. (2022). Stabilization of lithium metal interfaces by constructing composite artificial solid electrolyte interface with mesoporous TiO2 and perfluoropolymers. Small. 18, 2202981.

[94]

Sun, X. R., Yang, S. H., Zhang, T., Shi, Y. B., Dong, L., Ai, G., Li, D. J., Mao, W. F. (2022). Regulating Li-ion flux with a high-dielectric hybrid artificial SEI for stable Li metal anodes. Nanoscale. 14, 5033–5043.

[95]

Dong, C., Lin, Z. K., Yin, Y. X., Qiao, Y. X., Wang, W., Wu, Q. B., Yang, C. X., Rooney, D., Fan, C., Sun, K. N. (2021). A robust interface enabled by electrospun membrane with optimal resistance in lithium metal batteries. J. Energy Chem. 55, 1–9.

[96]

Chen, A. L., Qian, Y. S., Zheng, S. J., Chen, Y. Y., Ouyang, Y., Mo, L. L., Xu, Z. L., Miao, Y. E., Liu, T. X. (2023). In-situ constructed polymer/alloy composite with high ionic conductivity as an artificial solid electrolyte interphase to stabilize lithium metal anode. Nano Res. 16, 3888–3894.

[97]

Wu, C., Guo, F. H., Zhuang, L., Ai, X. P., Zhong, F. P., Yang, H. X., Qian, J. F. (2020). Mesoporous silica reinforced hybrid polymer artificial layer for high-energy and long-cycling lithium metal batteries. ACS Energy Lett. 5, 1644–1652.

[98]

Ye, S. F., Wang, L. F., Liu, F. F., Shi, P. C., Wang, H. Y., Wu, X. J., Yu, Y. (2020). g-C3N4 derivative artificial organic/inorganic composite solid electrolyte interphase layer for stable lithium metal anode. Adv. Energy Mater. 10, 2002647.

[99]

Wei, L., Jin, Z. Q., Lu, J. H., Guo, Y., Wang, Z. L., Cao, G. P., Qiu, J. Y., Wang, A. B., Wang, W. K. (2023). In-situ construction of hybrid artificial SEI with fluorinated siloxane to enable dendrite-free Li metal anodes. J. Materiomics. 9, 318–327.

[100]

Zhao, F., Deng, W., Dong, D. J., Zhou, X. F., Liu, Z. P. (2022). Seamlessly integrated alloy-polymer interphase for high-rate and long-life lithium metal anodes. Mater. Today Energy. 26, 100988.

[101]

Cai, Q. C., Qin, X. Y., Lin, K., Yang, Z. J., Hu, X., Li, T., Kang, F. Y., Li, B. H. (2021). Gradient structure design of a floatable host for preferential lithium deposition. Nano Lett. 21, 10252–10259.

[102]

Li, S., Wang, X. S., Li, Q. D., Liu, Q., Shi, P. R., Yu, J., Lv, W., Kang, F. Y., He, Y. B., Yang, Q. H. (2021). A multifunctional artificial protective layer for producing an ultra-stable lithium metal anode in a commercial carbonate electrolyte. J. Mater. Chem. A. 9, 7667–7674.

[103]

Zhang, K., Wu, F., Zhang, K., Weng, S. T., Wang, X. R., Gao, M. D., Sun, Y. H., Cao, D., Bai, Y., Xu, H. J., et al. (2021). Chlorinated dual-protective layers as interfacial stabilizer for dendrite-free lithium metal anode. Energy Storage Mater. 41, 485–494.

[104]

Zeng, J. K., Liu, Q. T., Jia, D. Y., Liu, R. L., Liu, S. H., Zheng, B. N., Zhu, Y. L., Fu, R. W., Wu, D. C. (2021). A polymer brush-based robust and flexible single-ion conducting artificial SEI film for fast charging lithium metal batteries. Energy Storage Mater. 41, 697–702.

[105]

Jiang, G. Y., Li, K. Y., Yu, F., Li, X. L., Mao, J. Y., Jiang, W. W., Sun, F. G., Dai, B., Li, Y. S. (2021). Robust artificial solid-electrolyte interfaces with biomimetic ionic channels for dendrite-free Li metal anodes. Adv. Energy Mater. 11, 2003496.

[106]

Yu, Z. A., Seo, S., Song, J., Zhang, Z. W., Oyakhire, S. T., Wang, Y., Xu, R., Gong, H. X., Zhang, S., Zheng, Y., et al. (2022). A solution-processable high-modulus crystalline artificial solid electrolyte interphase for practical lithium metal batteries. Adv. Energy Mater. 12, 2201025.

[107]

Ha, S., Yoon, H. J., Jung, J. I., Kim, H., Won, S., Kwak, J. H., Lim, H. D., Jin, H. J., Wie, J. J., Yun, Y. S. (2021). 3D-structured organic-inorganic hybrid solid-electrolyte-interface layers for Lithium metal anode. Energy Storage Mater. 37, 567–575.

[108]

Shang, M. W., Shovon, O. G., Wong, F. E. Y., Niu, J. J. (2023). A BF3-doped mxene dual-layer interphase for a reliable lithium-metal anode. Adv. Mater. 35, 2210111.

[109]

Cheng, Y. F., Wang, Z. J., Chen, J. B., Chen, Y. M., Ke, X., Wu, D. J., Zhang, Q., Zhu, Y. M., Yang, X. M., Gu, M., et al. (2023). Catalytic chemistry derived artificial solid electrolyte interphase for stable lithium metal anodes working at 20 mA cm−2 and 20 mAh cm−2. Angew. Chem. Int. Ed. 62, e202305723.

Publication history
Copyright
Rights and permissions

Publication history

Received: 23 August 2023
Revised: 09 September 2023
Accepted: 10 September 2023
Published: 25 September 2023
Issue date: September 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return