AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Bulk nanoporous platinum for electrochemical actuation

Haonan Sun1Yizhou Huang1Shan Shi1,2( )
Research Group of Integrated Metallic Nanomaterials Systems, Hamburg University of Technology, Hamburg, Germany
Institute of Materials Mechanics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
Show Author Information

Graphical Abstract

Abstract

Bulk nanoporous platinum (np-Pt) samples with a remarkably fine ligament size down to 2 nm and good mechanical robustness were fabricated for the first time by electrochemically dealloying Pt15Cu85 master alloy in 1 mol L−1 H2SO4 at 60 ℃. The as-prepared np-Pt shows an electrochemically active specific surface area as high as 25 m2/g due to the ultrafine nanostructure. The active surface area remains almost invariable even after 15% macroscopic compressive strain. Furthermore, np-Pt shows considerably high thermal stability due to the low surface diffusivity of Pt. Np-Pt is a promising surface- or interface-controlled functional material, particularly when excellent electrochemical and mechanical performance are necessary due to its high surface-to-volume ratio and mechanical robustness. This work demonstrated the potential application of np-Pt as an electrochemical actuation material. In-situ dilatometry experiments revealed that the surface adsorption–desorption of OH species on np-Pt causes significant strain variations. The proposed np-Pt electrochemical actuator shows an operating voltage down to 1.0 V, a large reversible strain amplitude of 0.37%, and a strain energy density of 1.64 MJ/m³.

References

[1]

Germain, J., Hradil, J., Fréchet, J. M. J., Svec, F. (2006). High surface area nanoporous polymers for reversible hydrogen storage. Chem. Mater. 18, 4430–4435.

[2]

Jiang, H. L., Liu, B., Lan, Y. Q., Kuratani, K., Akita, T., Shioyama, H., Zong, F. Q., Xu, Q. (2011). From metal–organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 133, 11854–11857.

[3]

Rouya, E., Cattarin, S., Reed, M. L., Kelly, R. G., Zangari, G. (2012). Electrochemical characterization of the surface area of nanoporous gold films. J. Electrochem. Soc. 159, K97–K102.

[4]

Zhang, J. T., Li, C. M. (2012). Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems. Chem. Soc. Rev. 41, 7016–7031.

[5]

Bansal, V., Jani, H., Du Plessis, J., Coloe, P. J., Bhargava, S. K. (2008). Galvanic replacement reaction on metal films: a one‐step approach to create nanoporous surfaces for catalysis. Adv. Mater. 20, 717–723.

[6]
Lu, G. M., Zhao, X. S. (2004). Nanoporous Materials: Science and Engineering. London: Imperial College Press.
[7]

Yuan, H. C., Yost, V. E., Page, M. R., Stradins, P., Meier, D. L., Branz, H. M. (2009). Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules. Appl. Phys. Lett. 95, 123501.

[8]

Gan, L., Heggen, M., O’Malley, R., Theobald, B., Strasser, P. (2013). Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts. Nano Lett. 13, 1131–1138.

[9]

Gan, L., Cui, C. H., Rudi, S., Strasser, P. (2014). Core–shell and nanoporous particle architectures and their effect on the activity and stability of Pt ORR electrocatalysts. Top. Catal. 57, 236–244.

[10]

Jin, H. J., Weissmüller, J. (2010). Bulk nanoporous metal for actuation. Adv. Eng. Mater. 12, 714–723.

[11]
Weissmüller, J., Viswanath, R. N., Kramer, D., Zimmer, P., Würschum, R., Gleiter, H. (2003). Charge-induced reversible strain in a metal. Science 300, 312–315.
[12]

King, T. G., Preston, M. E., Murphy, B. J. M., Cannell, D. S. (1990). Piezoelectric ceramic actuators: a review of machinery applications. Precis. Eng. 12, 131–136.

[13]

Newcomb, C. V., Flinn, I. (1982). Improving the linearity of piezoelectric ceramic actuators. Electron. Lett. 18, 442–444.

[14]

Lendlein, A., Gould, O. E. C. (2019). Reprogrammable recovery and actuation behaviour of shape-memory polymers. Nat. Rev. Mater. 4, 116–133.

[15]

Hu, L., Zhang, Q., Li, X., Serpe, M. J. (2019). Stimuli-responsive polymers for sensing and actuation. Mater. Horiz. 6, 1774–1793.

[16]

Sun, H. N., Wang, X. J., Sun, Q. Z., Zhang, X. X., Ma, Z., Guo, M. Y., Sun, B. W., Zhu, X. P., Liu, Q. D., Lou, X. J. (2020). Large energy storage density in BiFeO3-BaTiO3-AgNbO3 lead-free relaxor ceramics. J. Eur. Ceram. Soc. 40, 2929–2935.

[17]
Choi, S. B., Han, Y. M. (2016). Piezoelectric Actuators: Control Applications of Smart Materials. USA: CRC Press.
[18]
Pelrine, R., Kornbluh, R., Pei, Q. B., Joseph, J. (2000). High-speed electrically actuated elastomers with strain greater than 100%. Science 287, 836–839.
[19]

Haiss, W. (2001). Surface stress of clean and adsorbate-covered solids. Rep. Prog. Phys. 64, 591–648.

[20]
Shi, S., Li, Y., Ngo-Dinh, B. N., Markmann, J., Weissmüller, J. (2021). Scaling behavior of stiffness and strength of hierarchical network nanomaterials. Science 371, 1026–1033.
[21]

Weissmüller, J., Cahn, J. W. (1997). Mean stresses in microstructures due to interface stresses: a generalization of a capillary equation for solids. Acta Mater. 45, 1899–1906.

[22]

Viswanath, R. N., Kramer, D., Weissmüller, J. (2008). Adsorbate effects on the surface stress–charge response of platinum electrodes. Electrochim. Acta. 53, 2757–2767.

[23]

Shi, S., Markmann, J., Weissmüller, J. (2017). Actuation by hydrogen electrosorption in hierarchical nanoporous palladium. Philos. Mag. 97, 1571–1587.

[24]

Hakamada, M., Nakano, H., Furukawa, T., Takahashi, M., Mabuchi, M. (2010). Hydrogen storage properties of nanoporous palladium fabricated by dealloying. J. Phys. Chem. C. 114, 868–873.

[25]

Biener, J., Wittstock, A., Zepeda-Ruiz, L. A., Biener, M. M., Zielasek, V., Kramer, D., Viswanath, R. N., Weissmüller, J., Bäumer, M., Hamza, A. V. (2009). Surface-chemistry-driven actuation in nanoporous gold. Nat. Mater. 8, 47–51.

[26]

Jin, H. J., Parida, S., Kramer, D., Weissmüller, J. (2008). Sign-inverted surface stress-charge response in nanoporous gold. Surf. Sci. 602, 3588–3594.

[27]

Mathur, A., Erlebacher, J. (2007). Size dependence of effective Young’s modulus of nanoporous gold. Appl. Phys. Lett. 90, 061910.

[28]

Jin, H. J., Wang, X. L., Parida, S., Wang, K., Seo, M., Weissmüller, J. (2010). Nanoporous Au− Pt alloys as large strain electrochemical actuators. Nano Lett. 10, 187–194.

[29]
Erlebacher, J., Aziz, M. J., Karma, A., Dimitrov, N., Sieradzki, K. (2001). Evolution of nanoporosity in dealloying. Nature 410, 450–453.
[30]
Mani, P., Srivastava, R., Strasser, P. (2011). Dealloyed binary PtM3 (M= Cu, Co, Ni) and ternary PtNi3M (M= Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: performance in polymer electrolyte membrane fuel cells. J. Power Sources 196, 666–673.
[31]

McCue, I., Benn, E., Gaskey, B., Erlebacher, J. (2016). Dealloying and dealloyed materials. Annu. Rev. Mater. Res. 46, 263–286.

[32]

Binninger, T., Fabbri, E., Kötz, R., Schmidt, T. J. (2014). Determination of the electrochemically active surface area of metal-oxide supported platinum catalyst. J. Electrochem. Soc. 161, H121–H128.

[33]

Watt-Smith, M. J., Friedrich, J. M., Rigby, S. P., Ralph, T. R., Walsh, F. C. (2008). Determination of the electrochemically active surface area of Pt/C PEM fuel cell electrodes using different adsorbates. J. Phys. D: Appl. Phys. 41, 174004.

[34]

Gasteiger, H. A., Kocha, S. S., Sompalli, B., Wagner, F. T. (2005). Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B: Environ. 56, 9–35.

[35]
Fujigaya, T., Okamoto, M., Nakashima, N. (2009). Design of an assembly of pyridine-containing polybenzimidazole, carbon nanotubes and Pt nanoparticles for a fuel cell electrocatalyst with a high electrochemically active surface area. Carbon 47, 3227–3232.
[36]

Seo, M., Makino, T., Sato, N. (1986). Piezoelectric response to surface stress change of platinum electrode. J. Electrochem. Soc. 133, 1138–1142.

[37]

Jia, Y. Y., Su, J. Y., Chen, Z. B., Tan, K., Chen, Q. L., Cao, Z. M., Jiang, Y. Q., Xie, Z. X., Zheng, L. S. (2015). Composition-tunable synthesis of Pt–Cu octahedral alloy nanocrystals from PtCu to PtCu3 via underpotential-deposition-like process and their electro-catalytic properties. RSC Adv. 5, 18153–18158.

[38]
Uchino, K. (1996). Piezoelectric Actuators and Ultrasonic Motors. New York: Springer.
[39]

Gibson, L. J. (2003). Cellular solids. MRS Bull. 28, 270–274.

[40]
Lüth, H. (1995). Surfaces and Interfaces of Solid Materials. 3rd ed. Berlin: Springer.
[41]

Madden, J. D. W., Vandesteeg, N. A., Anquetil, P. A., Madden, P. G. A., Takshi, A., Pytel, R. Z., Lafontaine, S. R., Wieringa, P. A., Hunter, I. W. (2004). Artificial muscle technology: physical principles and naval prospects. IEEE J. Oceanic Eng. 29, 706–728.

Energy Materials and Devices
Article number: 9370006
Cite this article:
Sun H, Huang Y, Shi S. Bulk nanoporous platinum for electrochemical actuation. Energy Materials and Devices, 2023, 1(1): 9370006. https://doi.org/10.26599/EMD.2023.9370006

3347

Views

642

Downloads

0

Crossref

Altmetrics

Received: 27 August 2023
Revised: 25 September 2023
Accepted: 26 September 2023
Published: 17 October 2023
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return