AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Unlocking high-performance organic cathodes: tailoring active group densities in covalent frameworks for aqueous zinc ion batteries

Meilin Li1,2,Fanbin Zeng1,2,Senlin Li1,2( )Sanlue Hu1,2Qingming Liu3Tengfei Zhang3Jun Zhou3( )Cuiping Han1,2( )
Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Towngas Energy Academy, Shenzhen 518000, China

Meilin Li and Fanbin Zeng contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Aqueous zinc ion batteries (AZIBs) are a promising energy storage technology due to their cost-effectiveness and safety. Organic materials with sustainable and designable structures are of great interest as AZIBs cathodes. However, small molecules in organic cathode materials face dissolution problems and suboptimal cycle life, whereas large molecules suffer from a low theoretical capacity due to their inert carbon skeletons. Here, we designed two covalent organic framework (COF) materials (benzoquinoxaline benzoquinone-based COF (BB-COF) and triquinoxalinylene benzoquinone-based COF (TB-COF)) with the same structure and number of energy storage groups to investigate the correlation between the densities of active sites and electrochemical performance. We conclude that the electrochemical behavior of organic conjugate-based energy storage materials lacks a linear correlation with active site quantity. Adjusting active site densities is crucial for material advancement. BB-COF and TB-COF with dual active sites (C=O and C=N) exhibit distinct characteristics. TB-COF, which has dense active groups, shows a high initial capacity (222 mAh g−1). Conversely, BB-COF, which features a large conjugated ring diameter, presents superior rate performance and enduring cycle stability. It even maintains stable cycling for 2000 cycles at −40 ℃. In-situ electrochemical quartz crystal microbalance tests reveal the energy storage mechanism of BB-COF, in which H+ storage is followed by Zn2+ storage.

Electronic Supplementary Material

Download File(s)
EMD-2023-0007_ESM.pdf (1.4 MB)

References

[1]

Liu, N., Li, B., He, Z. X., Dai, L., Wang, H. Y., Wang, L. (2021). Recent advances and perspectives on vanadium- and manganese-based cathode materials for aqueous zinc ion batteries. J. Energy Chem. 59, 134–159.

[2]

Zhao, Y. J., Zhang, P. J., Liang, J. R., Xia, X. Y., Ren, L. T., Song, L., Liu, W., Sun, X. M. (2022). Uncovering sulfur doping effect in MnO2 nanosheets as an efficient cathode for aqueous zinc ion battery. Energy Stor. Mater. 47, 424–433.

[3]

Zhu, X. D., Cao, Z. Y., Wang, W. J., Li, H. J., Dong, J. C., Gao, S. P., Xu, D. X., Li, L., Shen, J. F., Ye, M. X. (2021). Superior-performance aqueous zinc-ion batteries based on the in situ growth of MnO2 Nanosheets on V2CTX MXene. ACS Nano. 15, 2971–2983.

[4]

Xu, X. M., Xiong, F. Y., Meng, J. S., Wang, X. P., Niu, C. J., An, Q. Y., Mai, L. Q. (2020). Vanadium-based nanomaterials: a promising family for emerging metal-ion batteries. Adv. Funct. Mater. 30, 1904398.

[5]

Du, M., Miao, Z. Y., Li, H. Z., Zhang, F., Sang, Y. H., Wei, L., Liu, H., Wang, S. H. (2021). Oxygen-vacancy and phosphate coordination triggered strain engineering of vanadium oxide for high-performance aqueous zinc ion storage. Nano Energy. 89, 106477.

[6]

Lee, S., Hong, J., Kang, K. (2020). Redox-active organic compounds for future sustainable energy storage system. Adv. Energy Mater. 10, 2001445.

[7]

Wu, Y. W., Zeng, R. H., Nan, J. M., Shu, D., Qiu, Y. C., Chou, S. L. (2017). Quinone electrode materials for rechargeable lithium/sodium ion batteries. Adv. Energy Mater. 7, 1700278.

[8]

Lu, Y., Chen, J. (2020). Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 4, 127–142.

[9]
Li, S. L., Shang, J., Li, M. L., Xu, M. W., Zeng, F. B., Yin, H., Tang, Y. B., Han, C. P., Cheng, H. M. (2022). Design and synthesis of a π-conjugated N-heteroaromatic material for aqueous Zinc–Organic batteries with ultrahigh rate and extremely long life. Adv. Mater. in press. https://doi.org/10.1002/adma.202207115.
[10]

Han, C. P., Li, H. F., Li, Y., Zhu, J. X., Zhi, C. Y. (2021). Proton-assisted calcium-ion storage in aromatic organic molecular crystal with coplanar stacked structure. Nat. Commun. 12, 2400.

[11]

Song, Z. P., Zhou, H. S. (2013). Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ. Sci. 6, 2280–2301.

[12]

Nam, K. W., Kim, H., Beldjoudi, Y., Kwon, T. W., Kim, D. J., Stoddart, J. F. (2020). Redox-active phenanthrenequinone triangles in aqueous rechargeable zinc batteries. J. Am. Chem. Soc. 142, 2541–2548.

[13]

Lin, L., Lin, Z. R., Zhu, J. Q., Wang, K., Wu, W. L., Qiu, T., Sun, X. Q. (2023). A semi-conductive organic cathode material enabled by extended conjugation for rechargeable aqueous zinc batteries. Energy Environ. Sci. 16, 89–96.

[14]

Shi, R. J., Liu, L. J., Lu, Y., Wang, C. C., Li, Y. X., Li, L., Yan, Z. H., Chen, J. (2020). Nitrogen-rich covalent organic frameworks with multiple carbonyls for high-performance sodium batteries. Nat. Commun. 11, 178.

[15]

Diercks, C. S., Yaghi, O. M. (2017). The atom, the molecule, and the covalent organic framework. Science. 355, eaal1585.

[16]

Zhong, W. F., Sa, R. J., Li, L. Y., He, Y. J., Li, L. Y., Bi, J. H., Zhuang, Z. Y., Yu, Y., Zou, Z. G. (2019). A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 141, 7615–7621.

[17]

Xu, H., Tao, S. S., Jiang, D. L. (2016). Proton conduction in crystalline and porous covalent organic frameworks. Nat. Mater. 15, 722–726.

[18]

Luo, Z. Q., Liu, L. J., Ning, J. X., Lei, K. X., Lu, Y., Li, F. J., Chen, J. (2018). A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew. Chem., Int. Ed. 57, 9443–9446.

[19]

Khayum, M. A., Ghosh, M., Vijayakumar, V., Halder, A., Nurhuda, M., Kumar, S., Addicoat, M., Kurungot, S., Banerjee, R. (2019). Zinc ion interactions in a two-dimensional covalent organic framework based aqueous zinc ion battery. Chem. Sci. 10, 8889–8894.

[20]

Yu, M. H., Chandrasekhar, N., Raghupathy, R. K. M., Ly, K. H., Zhang, H. Z., Dmitrieva, E., Liang, C. L., Lu, X. H., Kühne, T. D., Mirhosseini, H., et al. (2020). A high-rate two-dimensional polyarylimide covalent organic framework anode for aqueous Zn-Ion energy storage devices. J. Am. Chem. Soc. 142, 19570–19578.

[21]

Wang, W. X., Kale, V. S., Cao, Z., Kandambeth, S., Zhang, W. L., Ming, J., Parvatkar, P. T., Abou-Hamad, E., Shekhah, O., Cavallo, L., et al. (2020). Phenanthroline covalent organic framework electrodes for high-performance Zinc-Ion supercapattery. ACS Energy Lett. 5, 2256–2264.

[22]

Peng, H. J., Huang, S. H., Montes-García, V., Pakulski, D., Guo, H. P., Richard, F., Zhuang, X. D., Samori, P., Ciesielski, A. (2023). Supramolecular engineering of cathode materials for aqueous zinc-ion energy storage devices: novel benzothiadiazole functionalized two-dimensional olefin-linked COFs. Angew. Chem., Int. Ed. 62, e202216136.

[23]

Zheng, S. B., Shi, D. J., Yan, D., Wang, Q. R., Sun, T. J., Ma, T., Li, L., He, D., Tao, Z. L., Chen, J. (2022). Orthoquinone-based covalent organic frameworks with ordered channel structures for ultrahigh performance aqueous zinc-organic batteries. Angew. Chem., Int. Ed. 61, e202117511.

[24]

Wang, W. X., Kale, V. S., Cao, Z., Lei, Y. J., Kandambeth, S., Zou, G. D., Zhu, Y. P., Abouhamad, E., Shekhah, O., Cavallo, L., et al. (2021). Molecular engineering of covalent organic framework cathodes for enhanced zinc-ion batteries. Adv. Mater. 33, 2103617.

[25]

Chen, Y., Li, J. Y., Zhu, Q., Fan, K., Cao, Y. Q., Zhang, G. Q., Zhang, C. Y., Gao, Y. B., Zou, J. C., Zhai, T. Y., et al. (2022). Two-dimensional organic supramolecule via hydrogen bonding and π–π stacking for ultrahigh capacity and long-life aqueous zinc–organic batteries. Angew. Chem., Int. Ed. 61, e202116289.

[26]

Ye, F., Liu, Q., Dong, H. L., Guan, K. L., Chen, Z. Y., Ju, N., Hu, L. F. (2022). Organic zinc-ion battery: planar, π-conjugated quinone-based polymer endows ultrafast ion diffusion kinetics. Angew. Chem., Int. Ed. 61, e202214244.

[27]

Liu, Z. X., Luo, X. B., Qin, L. P., Fang, G. Z., Liang, S. Q. (2022). Progress and prospect of low-temperature zinc metal batteries. Adv. Powder Mater. 1, 100011.

[28]

Wang, Z. Q., Zhou, M., Qin, L. P., Chen, M. H., Chen, Z. X., Guo, S., Wang, L. B., Fang, G. Z., Liang, S. Q. (2022). Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc–vanadium batteries. eScience. 2, 209–218.

[29]

Li, H. F., Yang, Q., Mo, F., Liang, G. J., Liu, Z. X., Tang, Z. J., Ma, L. T., Liu, J., Shi, Z. C., Zhi, C. Y. (2019). RETRACTED: MoS2 nanosheets with expanded interlayer spacing for rechargeable aqueous Zn-ion batteries. Energy Stor. Mater. 19, 94–101.

[30]

Sun, Q. Q., Sun, T., Du, J. Y., Li, K., Xie, H. M., Huang, G., Zhang, X. B. (2023). A sulfur heterocyclic quinone cathode towards high-rate and long-cycle aqueous Zn-organic batteries. Adv. Mater. 35, 2301088.

[31]

Sun, T. J., Zhang, W. J., Nian, Q. S., Tao, Z. L. (2023). Proton-insertion dominated polymer cathode for high-performance aqueous zinc-ion battery. Chem. Eng. J. 452, 139324.

[32]

Li, Z. H., Tan, J., Wang, Y., Gao, C. Y., Wang, Y. G., Ye, M. X., Shen, J. F. (2023). Building better aqueous Zn-organic batteries. Energy Environ. Sci. 16, 2398–2431.

[33]

Wang, L. L., Huang, K. W., Chen, J. T., Zheng, J. R. (2019). Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Sci. Adv. 5, eaax4279.

[34]

Wang, Y. R., Wang, C. X., Ni, Z. G., Gu, Y. M., Wang, B. L., Guo, Z. W., Wang, Z., Bin, D., Ma, J., Wang, Y. G. (2020). Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc-organic batteries. Adv. Mater. 32, 2000338.

Energy Materials and Devices
Article number: 9370007
Cite this article:
Li M, Zeng F, Li S, et al. Unlocking high-performance organic cathodes: tailoring active group densities in covalent frameworks for aqueous zinc ion batteries. Energy Materials and Devices, 2023, 1(1): 9370007. https://doi.org/10.26599/EMD.2023.9370007

4549

Views

893

Downloads

8

Crossref

Altmetrics

Received: 02 September 2023
Revised: 16 September 2023
Accepted: 19 September 2023
Published: 08 October 2023
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return