Journal Home > Volume 1 , Issue 1

As a unique two-dimensional (2D) material, 2D noble metal-based intermetallic compounds (IMCs) have attracted much attention in electrocatalysis owing to their exceptional physical and chemical properties. However, the synthesis of 2D noble metal-based IMCs with well-defined structures remains challenging. This comprehensive review begins by delving into the morphology modulation of 2D noble metal-based IMCs, highlighting their key synthesis strategies, such as the CO-assisted and halide ion modulation methods. Subsequently, we discuss the advantages of 2D noble metal-based IMCs in electrocatalysis, including oxygen reduction reaction, alcohol oxidation reaction, formic acid oxidation reaction, and hydrogen evolution reaction. Finally, the main challenges and perspectives for the future development of 2D noble metal-based IMC electrocatalysts are presented to accelerate their promising commercialization.


menu
Abstract
Full text
Outline
About this article

Two-dimensional noble metal-based intermetallics for electrocatalysis

Show Author's information Fukai Feng1,Sumei Han1,Qipeng Lu1( )Qinbai Yun2( )
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China

Fukai Feng and Sumei Han contributed equally to this work.

Abstract

As a unique two-dimensional (2D) material, 2D noble metal-based intermetallic compounds (IMCs) have attracted much attention in electrocatalysis owing to their exceptional physical and chemical properties. However, the synthesis of 2D noble metal-based IMCs with well-defined structures remains challenging. This comprehensive review begins by delving into the morphology modulation of 2D noble metal-based IMCs, highlighting their key synthesis strategies, such as the CO-assisted and halide ion modulation methods. Subsequently, we discuss the advantages of 2D noble metal-based IMCs in electrocatalysis, including oxygen reduction reaction, alcohol oxidation reaction, formic acid oxidation reaction, and hydrogen evolution reaction. Finally, the main challenges and perspectives for the future development of 2D noble metal-based IMC electrocatalysts are presented to accelerate their promising commercialization.

Keywords: synthesis, intermetallic, electrocatalysis, two-dimensional, noble metal

References(135)

[1]
She, Z. W., Kibsgaard, J., Dickens, C. F., Chorkendorff, I., Nørskov, J. K., Jaramillo, T. F. (2017). Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998.
DOI
[2]

Lelieveld, J., Klingmüller, K., Pozzer, A., Burnett, R. T., Haines, A., Ramanathan, V. (2019). Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc. Natl. Acad. Sci. USA. 116, 7192–7197.

[3]
Zhong, M., Tran, K., Min, Y. M., Wang, C. H., Wang, Z. Y., Dinh, C. T., De Luna, P., Yu, Z. Q., Rasouli, A. S., Brodersen, P., et al. (2020). Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183.
DOI
[4]

Zhu, C. Z., Li, H., Fu, S. F., Du, D., Lin, Y. H. (2016). Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 45, 517–531.

[5]

Jiao, Y., Zheng, Y., Jaroniec, M., Qiao, S. Z. (2015). Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086.

[6]

Zhu, J., Hu, L. S., Zhao, P. X., Lee, L. Y. S., Wong, K. Y. (2020). Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 120, 851–918.

[7]

Ren, X. F., Liu, B. H., Liang, X. Y., Wang, Y. R., Lv, Q. Y., Liu, A. M. (2021). Review-current progress of non-precious metal for ORR Based electrocatalysts used for fuel cells. J. Electrochem. Soc. 168, 044521.

[8]

Zhang, Y. P., Gao, F., You, H. M., Li, Z. L., Zou, B., Du, Y. K. (2022). Recent advances in one-dimensional noble-metal-based catalysts with multiple structures for efficient fuel-cell electrocatalysis. Coord. Chem. Rev. 450, 214244.

[9]

Kim, H., Yoo, T. Y., Bootharaju, M. S., Kim, J. H., Chung, D. Y., Hyeon, T. (2022). Noble metal-based multimetallic nanoparticles for electrocatalytic applications. Adv. Sci. 9, 2104054.

[10]

Trindell, J. A., Duan, Z. Y., Henkelman, G., Crooks, R. M. (2020). Well-defined nanoparticle electrocatalysts for the refinement of theory. Chem. Rev. 120, 814–850.

[11]

Yang, T. H., Ahn, J., Shi, S., Wang, P., Gao, R. Q., Qin, D. (2021). Noble-metal nanoframes and their catalytic applications. Chem. Rev. 121, 796–833.

[12]

Liu, L. C., Corma, A. (2018). Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079.

[13]

Zhu, D. L., Zhao, H. D., Wang, B., Yang, S. C. (2022). Synthesis and electrocatalytic performance of ultrathin noble metal nanosheets. CrystEngComm. 24, 1319–1333.

[14]
Han, A. L., Zhang, Z. D., Li, X. Y., Wang, D. S., Li, Y. D. (2020). Atomic thickness catalysts: synthesis and applications. Small Methods 4, 2000248.
DOI
[15]
Zhang, L. Y., Ouyang, Y. R., Wang, S., Wu, D. B., Jiang, M. C., Wang, F. Q., Yuan, W. Y., Li, C. M. (2019). Perforated Pd nanosheets with crystalline/amorphous heterostructures as a highly active robust catalyst toward formic acid oxidation. Small 15, 1904245.
DOI
[16]
Zhang, Y., Zhu, X., Guo, J., Huang, X. Q. (2016). Controlling palladium nanocrystals by solvent-induced strategy for efficient multiple liquid fuels electrooxidation. ACS Appl. Mater. Interfaces 8, 20642–20649.
DOI
[17]
Li, J., Zhou, Z. Y., Xu, H., Wang, C., Hata, S., Dai, Z. X., Shiraishi, Y., Du, Y. K. (2022). In situ nanopores enrichment of Mesh-like palladium nanoplates for bifunctional fuel cell reactions: a joint etching strategy. J. Colloid Interface Sci. 611, 523–532.
DOI
[18]

Yang, N. L., Cheng, H. F., Liu, X. Z., Yun, Q. B., Chen, Y., Li, B., Chen, B., Zhang, Z. C., Chen, X. P., Lu, Q. P., et al. (2018). Amorphous/crystalline hetero-phase Pd nanosheets: one-pot synthesis and highly selective hydrogenation reaction. Adv. Mater. 30, 1803234.

[19]
Jang, S. W., Dutta, S., Kumar, A., Hong, Y. R., Kang, H., Lee, S., Ryu, S., Choi, W., Lee, I. S. (2020). Holey Pt nanosheets on NiFe-hydroxide laminates: synergistically enhanced electrocatalytic 2D interface toward hydrogen evolution reaction. ACS Nano 14, 10578–10588.
DOI
[20]

Chhetri, M., Rana, M., Loukya, B., Patil, P. K., Datta, R., Gautam, U. K. (2015). Mechanochemical synthesis of free-standing platinum nanosheets and their electrocatalytic properties. Adv. Mater. 27, 4430–4437.

[21]

Duan, H. H., Yan, N., Yu, R., Chang, C. R., Zhou, G., Hu, H. S., Rong, H. P., Niu, Z. Q., Mao, J. J., Asakura, H., et al. (2014). Ultrathin rhodium nanosheets. Nat. Commun. 5, 3093.

[22]

Zhu, J. Y., Chen, S. Q., Xue, Q., Li, F. M., Yao, H. C., Xu, L., Chen, Y. (2020). Hierarchical porous Rh nanosheets for methanol oxidation reaction. Appl. Catal. B: Environ. 264, 118520.

[23]

Cheong, W. C., Liu, C. H., Jiang, M. L., Duan, H. H., Wang, D. S., Chen, C., Li, Y. D. (2016). Free-standing palladium-nickel alloy wavy nanosheets. Nano Res. 9, 2244–2250.

[24]

Huang, W. J., Kang, X. L., Xu, C., Zhou, J. H., Deng, J., Li, Y. G., Cheng, S. (2018). 2D PdAg alloy nanodendrites for enhanced ethanol electroxidation. Adv. Mater. 30, 1706962.

[25]

Lai, J. P., Lin, F., Tang, Y. H., Zhou, P., Chao, Y. G., Zhang, Y. L., Guo, S. J. (2019). Efficient bifunctional polyalcohol oxidation and oxygen reduction electrocatalysts enabled by ultrathin PtPdM (M = Ni, Fe, Co) nanosheets. Adv. Energy Mater. 9, 1800684.

[26]

Liu, S. H., Zhang, Y. T., Mao, X. N., Li, L., Zhang, Y., Li, L. G., Pan, Y., Li, X. G., Wang, L., Shao, Q., et al. (2022). Ultrathin perovskite derived Ir-based nanosheets for high-performance electrocatalytic water splitting. Energy Environ. Sci. 15, 1672–1681.

[27]
Luo, M. C., Zhao, Z. L., Zhang, Y. L., Sun, Y. J., Xing, Y., Lv, F., Yang, Y., Zhang, X., Hwang, S., Qin, Y. N., et al. (2019). PdMo bimetallene for oxygen reduction catalysis. Nature 574, 81–85.
DOI
[28]
Yang, M., Lao, X. Z., Sun, J., Ma, N., Wang, S. Q., Ye, W. N., Guo, P. Z. (2020). Assembly of bimetallic PdAg nanosheets and their enhanced electrocatalytic activity toward ethanol oxidation. Langmuir 36, 11094–11101.
DOI
[29]
Lu, W. Y., Xia, X. Y., Wei, X. X., Li, M. M., Zeng, M., Guo, J., Cheng, S. (2020). Nanoengineering 2D dendritic PdAgPt nanoalloys with edge-enriched active sites for enhanced alcohol electroxidation and electrocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 12, 21569–21578.
DOI
[30]
Jin, Y. C., Chen, F. Y., Guo, L. F., Wang, J. L., Kou, B., Jin, T., Liu, H. Z. (2020). Engineering two-dimensional PdAgRh nanoalloys by surface reconstruction for highly active and stable formate oxidation electrocatalysis. ACS Appl. Mater. Interfaces 12, 26694–26703.
DOI
[31]

Fan, J. C., Yu, S. S., Qi, K., Liu, C., Zhang, L., Zhang, H. Y., Cui, X. Q., Zheng, W. T. (2018). Synthesis of ultrathin wrinkle-free PdCu alloy nanosheets for modulating d-band electrons for efficient methanol oxidation. J. Mater. Chem. A. 6, 8531–8536.

[32]
An, H. M., Zhao, Z. L., Zhang, L. Y., Chen, Y., Chang, Y. Y., Li, C. M. (2018). Ir-alloyed ultrathin ternary PdIrCu nanosheet-constructed flower with greatly enhanced catalytic performance toward formic acid electrooxidation. ACS Appl. Mater. Interfaces 10, 41293–41298.
DOI
[33]
He, S. L., Liu, Y., Li, H. J., Wu, Q. B., Ma, D. S., Gao, D. J., Bi, J., Yang, Y. Y., Cui, C. H. (2021). Highly dispersed Mo sites on Pd nanosheets enable selective ethanol-to-acetate conversion. ACS Appl. Mater. Interfaces 13, 13311–13318.
DOI
[34]

Wang, W., Zhang, X., Zhang, Y. H., Chen, X. W., Ye, J. Y., Chen, J. Y., Lyu, Z. X., Chen, X. J., Kuang, Q., Xie, S. F., et al. (2020). Edge enrichment of ultrathin 2D PdPtCu trimetallic nanostructures effectuates top-ranked ethanol electrooxidation. Nano Lett. 20, 5458–5464.

[35]

Luo, X. L., Liu, C., Wang, X. L., Shao, Q., Pi, Y. C., Zhu, T., Li, Y. Y., Huang, X. Q. (2020). Spin regulation on 2D Pd–Fe–Pt nanomeshes promotes fuel electrooxidations. Nano Lett. 20, 1967–1973.

[36]
Shi, L. J., Wang, Q., Ren, Q., Yang, Q. H., Zhao, D. G., Feng, Y. H., Chen, H. Y., Wang, Y. W. (2022). Facile synthesis of Pd and PdPtNi trimetallic nanosheets as enhanced oxygen reduction electrocatalysts. Small 18, 2103665.
DOI
[37]

Mahmood, A., Lin, H. F., Xie, N. H., Wang, X. (2017). Surface confinement etching and polarization matter: a new approach to prepare ultrathin PtAgCo nanosheets for hydrogen-evolution reactions. Chem. Mater. 29, 6329–6335.

[38]

Zhou, M., Li, C., Fang, J. Y. (2021). Noble-metal based random alloy and intermetallic nanocrystals: syntheses and applications. Chem. Rev. 121, 736–795.

[39]
Ashraf, S., Liu, Y. Y., Wei, H. J., Shen, R. F., Zhang, H. H., Wu, X. L., Mehdi, S., Liu, T., Li, B. J. (2023). Bimetallic nanoalloy catalysts for green energy production: advances in synthesis routes and characterization techniques. Small 19, 2303031.
DOI
[40]

Yu, Q., Yang, Y. (2020). Synthesis of two-dimensional metallic nanosheets: from elemental metals to chemically complex alloys. ChemNanoMat. 6, 1683–1711.

[41]

Cheng, N. N., Starkewolf, Z., Davidson, R. A., Sharmah, A., Lee, C., Lien, J., Guo, T. (2012). Chemical enhancement by nanomaterials under X-ray irradiation. J. Am. Chem. Soc. 134, 1950–1953.

[42]

Han, S. M., He, C. H., Yun, Q. B., Li, M. Y., Chen, W., Cao, W. B., Lu, Q. P. (2021). Pd-based intermetallic nanocrystals: from precise synthesis to electrocatalytic applications in fuel cells. Coord. Chem. Rev. 445, 214085.

[43]

Gao, L., Li, X. X., Yao, Z. Y., Bai, H. J., Lu, Y. F., Ma, C., Lu, S. F., Peng, Z. M., Yang, J. L., Pan, A., et al. (2019). Unconventional p–d hybridization interaction in PtGa ultrathin nanowires boosts oxygen reduction electrocatalysis. J. Am. Chem. Soc. 141, 18083–18090.

[44]

Fan, Z. X., Luo, Z. M., Huang, X., Li, B., Chen, Y., Wang, J., Hu, Y. L., Zhang, H. (2016). Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 138, 1414–1419.

[45]

Rezaei, M., Tabaian, S. H., Haghshenas, D. F. (2014). Electrochemical nucleation and growth of Pd/PdCo core–shell nanoparticles with enhanced activity and durability as fuel cell catalyst. J. Mater. Chem. A. 2, 4588–4597.

[46]

Xia, Y. N., Xia, X. H., Peng, H. C. (2015). Shape-controlled synthesis of colloidal metal nanocrystals: thermodynamic versus kinetic products. J. Am. Chem. Soc. 137, 7947–7966.

[47]
Brune, H., Romainczyk, C., Röder, H., Kern, K. (1994). Mechanism of the transition from fractal to dendritic growth of surface aggregates. Nature 369, 469–471.
DOI
[48]

Zhang, J. T., Liu, X. Z., Ji, Y. J., Liu, X. R., Su, D., Zhuang, Z. B., Chang, Y. C., Pao, C. W., Shao, Q., Hu, Z. W., et al. (2023). Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis. Nat. Commun. 14, 1761.

[49]

Li, C. L., Gao, F., Ren, Y. Y., Li, B. S., Li, L. L., Lu, Z. M., Yang, X. J., Zhang, X. H., Yu, X. F. (2022). PtPdMo nanosheets with controllable synthesis for enhanced oxygen reduction reactions. ACS Appl. Nano Mater. 5, 1192–1199.

[50]

Liu, S. L., Zhang, H. G., Yu, H. J., Deng, K., Wang, Z. Q., Xu, Y., Wang, L., Wang, H. J. (2023). Tailored design of PdRh bimetallene nanoribbons by solvent-induced strategy for efficient alkaline hydrogen evolution. Appl. Catal. B: Environ. 336, 122948.

[51]

Sun, Y. J., Chen, W. B., Zhang, W. S., Nie, Y., Zhang, Q. H., Gu, L., Luo, M. C., Guo, S. J. (2023). Trimetallic porous PtIrBi nanoplates with robust CO tolerance for enhanced formic acid oxidation catalysis. Adv. Funct. Mater. 33, 2303299.

[52]

Guo, K., Fan, D. P., Teng, Y. X., Xu, D. D., Li, Y. F., Bao, J. C. (2022). Engineering PdIr nanostructures synergistically induced by self-assembled surfactants and halide ions for alcohol electrooxidation. Chem. Eur. J. 28, e202200053.

[53]

Kelleppan, V. T., King, J. P., Butler, C. S. G., Williams, A. P., Tuck, K. L., Tabor, R. F. (2021). Heads or tails? The synthesis, self-assembly, properties and uses of betaine and betaine-like surfactants. Adv. Colloid Interface Sci. 297, 102528.

[54]

Yang, T. H., Shi, Y. F., Janssen, A., Xia, Y. N. (2020). Surface capping agents and their roles in shape-controlled synthesis of colloidal metal nanocrystals. Angew. Chem. Int. Ed. 59, 15378–15401.

[55]
Zhao, X. J., Dai, L., Qin, Q., Pei, F., Hu, C. Y., Zheng, N. F. (2017). Self‐supported 3D PdCu alloy nanosheets as a bifunctional catalyst for electrochemical reforming of ethanol. Small 13, 1602970.
DOI
[56]

Kang, Y. J., Ye, X. C., Murray, C. B. (2010). Size-and shape-selective synthesis of metal nanocrystals and nanowires using CO as a reducing. Agent. Angew. 122, 6292–6295.

[57]

Hu, C. Y., Mu, X. L., Fan, J. M., Ma, H. B., Zhao, X. J., Chen, G. X., Zhou, Z. Y., Zheng, N. F. (2016). Interfacial effects in PdAg bimetallic nanosheets for selective dehydrogenation of formic acid. ChemNanoMat. 2, 28–32.

[58]

Luo, S. P., Chen, W., Cheng, Y., Song, X., Wu, Q. L., Li, L. X., Wu, X. T., Wu, T. H., Li, M. R., Yang, Q., et al. (2019). Trimetallic synergy in intermetallic PtSnBi nanoplates boosts formic acid oxidation. Adv. Mater. 31, 1903683.

[59]

Zhan, C. H., Bu, L. Z., Sun, H. R., Huang, X. W., Zhu, Z. P., Yang, T., Ma, H. B., Li, L. G., Wang, Y. C., Geng, H. B., et al. (2023). Medium/high-entropy amalgamated core/shell nanoplate achieves efficient formic acid catalysis for direct formic acid fuel cell. Angew. Chem. Int. Ed. 62, e202213783.

[60]
Bu, L. Z., Zhang, N., Guo, S. J., Zhang, X., Li, J., Yao, J. L., Wu, T., Lu, G., Ma, J. Y., Su, D., et al. (2016). Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354, 1410–1414.
DOI
[61]
Wang, K., Qin, Y. N., Lv, F., Li, M. Q., Liu, Q., Lin, F., Feng, J. R., Yang, C., Gao, P., Guo, S. J. (2018). Intermetallic Pd3Pb nanoplates enhance oxygen reduction catalysis with excellent methanol tolerance. Small Methods 2, 1700331.
DOI
[62]

Feng, Y. G., Shao, Q., Lv, F., Bu, L. Z., Guo, J., Guo, S. J., Huang, X. Q. (2020). Intermetallic PtBi nanoplates boost oxygen reduction catalysis with superior tolerance over chemical fuels. Adv. Sci. 7, 1800178.

[63]

Yun, Q. B., Lu, Q. P., Li, C. L., Chen, B., Zhang, Q. H., He, Q. Y., Hu, Z. N., Zhang, Z. C., Ge, Y. Y., Yang, N. L., et al. (2019). Synthesis of PdM (M=Zn, Cd, ZnCd) nanosheets with an unconventional face-centered tetragonal phase as highly efficient electrocatalysts for ethanol oxidation. ACS Nano. 13, 14329–14336.

[64]

Liang, J. S., Xia, Y., Liu, X., Huang, F. Y., Liu, J. J., Li, S. Z., Wang, T. Y., Jiao, S. H., Cao, R. G., et al. (2022). Molybdenum-doped ordered L10-PdZn nanosheets for enhanced oxygen reduction electrocatalysis. SusMat. 2, 347–356.

[65]
He, M. Q., Ai, Y. J., Hu, W. T., Guan, L. D., Ding, M. Y., Liang, Q. L. (2023). Recent advances of seed-mediated growth of metal nanoparticles: from growth to applications. Adv. Mater. in press, https://doi.org/10.1002/adma.202211915.
DOI
[66]

Murphy, C. J., Sau, T. K., Gole, A. M., Orendorff, C. J., Gao, J. X., Gou, L. F., Hunyadi, S. E., Li, T. (2005). Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B. 109, 13857–13870.

[67]

Niu, W. X., Zheng, S. L., Wang, D. W., Liu, X. Q., Li, H. J., Han, S., Chen, J. A., Tang, Z. Y., Xu, G. B. (2009). Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals. J. Am. Chem. Soc. 131, 697–703.

[68]

Lu, C. L., Prasad, K. S., Wu, H. L., Ho, J. A. A., Huang, M. H. (2010). Au nanocube-directed fabrication of Au−Pd core−shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity. J. Am. Chem. Soc. 132, 14546–14553.

[69]

Ranallo, S., Amodio, A., Idili, A., Porchetta, A., Ricci, F. (2016). Electronic control of DNA-based nanoswitches and nanodevices. Chem. Sci. 7, 66–71.

[70]

Liang, J. S., Li, S. Z., Chen, Y. W., Liu, X., Wang, T. Y., Han, J. T., Jiao, S. H., Cao, R. G., Li, Q. (2020). Ultrathin and defect-rich intermetallic Pd2Sn nanosheets for efficient oxygen reduction electrocatalysis. J. Mater. Chem. A. 8, 15665–15669.

[71]

Xie, L. F., Liu, X., Huang, F. Y., Liang, J. S., Liu, J. J., Wang, T. Y., Yang, L. M., Cao, R. G., Li, Q. (2022). Regulating Pd-catalysis for electrocatalytic CO2 reduction to formate via intermetallic PdBi nanosheets. Chin. J. Catal. 43, 1680–1686.

[72]

Guo, J. C., Gao, L., Tan, X., Yuan, Y. L., Kim, J., Wang, Y., Wang, H., Zeng, Y. J., Choi, S. I., Smith, S. C., et al. (2021). Template-directed rapid synthesis of Pd-based ultrathin porous intermetallic nanosheets for efficient oxygen reduction. Angew. Chem. Int. Ed. 60, 10942–10949.

[73]

Nguyen, T. D., Vo, T. T., Huynh, T. T. T., Nguyen, C. H., Doan, V. D., Nguyen, D. T., Nguyen, T. D., Dang, C. H. (2019). Effect of capping methods on the morphology of silver nanoparticles: study on the media-induced release of silver from the nanocomposite β-cyclodextrin/alginate. New J. Chem. 43, 16841–16852.

[74]

Yan, Y., Chen, K. B., Li, H. R., Hong, W., Hu, X. B., Xu, Z. (2014). Capping effect of reducing agents and surfactants in synthesizing silver nanoplates. Trans. Nonferr. Met. Soc. 24, 3732–3738.

[75]

Sui, Z. M., Chen, X., Wang, L. Y., Xu, L. M., Zhuang, W. C., Chai, Y. C., Yang, C. J. (2006). Capping effect of CTAB on positively charged Ag nanoparticles. Phys. E: Low-Dimens. Syst. Nanostructures. 33, 308–314.

[76]

Zhang, H., Jin, M. S., Wang, J. G., Li, W. Y., Camargo, P. H. C., Kim, M. J., Yang, D. R., Xie, Z. X., Xia, Y. N. (2011). Synthesis of Pd−Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. J. Am. Chem. Soc. 133, 6078–6089.

[77]

Zheng, Y. Q., Zeng, J., Ruditskiy, A., Liu, M. C., Xia, Y. N. (2014). Oxidative etching and its role in manipulating the nucleation and growth of noble-metal nanocrystals. Chem. Mater. 26, 22–33.

[78]

Zhang, Y., Liu, X. Z., Liu, T. Y., Ma, X. Y., Feng, Y. G., Xu, B. Y., Cai, W. B., Li, Y. F., Su, D., Shao, Q., et al. (2022). Rhombohedral Pd–Sb nanoplates with Pd-terminated surface: an efficient bifunctional fuel-cell catalyst. Adv. Mater. 34, 2202333.

[79]

Tang, C. Y., Zhang, N., Ji, Y. J., Shao, Q., Li, Y. Y., Xiao, X. H., Huang, X. Q. (2019). Fully tensile strained Pd3Pb/Pd tetragonal nanosheets enhance oxygen reduction catalysis. Nano Lett. 19, 1336–1342.

[80]

Qin, Y. N., Luo, M. C., Sun, Y. J., Li, C. J., Huang, B. L., Yang, Y., Li, Y. J., Wang, L., Guo, S. J. (2018). Intermetallic hcp-PtBi/fcc-Pt core/shell nanoplates enable efficient bifunctional oxygen reduction and methanol oxidation electrocatalysis. ACS Catal. 8, 5581–5590.

[81]

Xiong, L. K., Sun, Z. T., Zhang, X., Zhao, L., Huang, P., Chen, X. W., Jin, H. D., Sun, H., Lian, Y. B., Deng, Z., et al. (2019). Octahedral gold-silver nanoframes with rich crystalline defects for efficient methanol oxidation manifesting a CO-promoting effect. Nat. Commun. 10, 3782.

[82]

Huang, X. Q., Tang, S. H., Mu, X. L., Dai, Y., Chen, G. X., Zhou, Z. Y., Ruan, F. X., Yang, Z. L., Zheng, N. F. (2011). Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 6, 28–32.

[83]

Tang, M., Chen, W., Luo, S. P., Wu, X. T., Fan, X. K., Liao, Y. J., Song, X., Cheng, Y., Li, L. X., Tan, L., et al. (2021). Trace Pd modified intermetallic PtBi nanoplates towards efficient formic acid electrocatalysis. J. Mater. Chem. A. 9, 9602–9608.

[84]
Luo, S., Ou, Y., Li, L., Li, J. J., Wu, X. Q., Jiang, Y., Gao, M. X., Yang, X. F., Zhang, H., Yang, D. R. (2019). Intermetallic Pd3Pb ultrathin nanoplate-constructed flowers with low-coordinated edge sites boost oxygen reduction performance. Nanoscale 11, 17301–17307.
DOI
[85]

Wang, K., Du, H. Y., Sriphathoorat, R., Shen, P. K. (2018). Vertex-type engineering of Pt-Cu-Rh heterogeneous nanocages for highly efficient ethanol electrooxidation. Adv. Mater. 30, 1804074.

[86]

Luo, M. C., Sun, Y. J., Wang, L., Guo, S. J. (2017). Tuning multimetallic ordered intermetallic nanocrystals for efficient energy electrocatalysis. Adv. Energy Mater. 7, 1602073.

[87]

Chen, W., Luo, S. P., Sun, M. Z., Wu, X. Y., Zhou, Y. S., Liao, Y. J., Tang, M., Fan, X. K., Huang, B. L., Quan, Z. W. (2022). High-entropy intermetallic PtRhBiSnSb nanoplates for highly efficient alcohol oxidation electrocatalysis. Adv. Mater. 34, 2206276.

[88]
Wang, A. L., Zhu, L. J., Yun, Q. B., Han, S. M., Zeng, L., Cao, W. B., Meng, X. M., Xia, J., Lu, Q. P. (2020). Bromide ions triggered synthesis of noble metal–based intermetallic nanocrystals. Small 16, 2003782.
DOI
[89]

Chia, X. Y., Pumera, M. (2018). Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 1, 909–921.

[90]

Sun, Y. F., Gao, S., Lei, F. C., Xie, Y. (2015). Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev. 44, 623–636.

[91]

Bu, L. Z., Tang, C. Y., Shao, Q., Zhu, X., Huang, X. Q. (2018). Three-dimensional Pd3Pb nanosheet assemblies: high-performance Non-Pt electrocatalysts for bifunctional fuel cell reactions. ACS Catal. 8, 4569–4575.

[92]
Chen, W., Luo, S. P., Sun, M. Z., Tang, M., Fan, X. K., Cheng, Y., Wu, X. Y., Liao, Y. J., Huang, B. L., Quan, Z. W. (2022). Hexagonal PtBi intermetallic inlaid with sub-monolayer Pb oxyhydroxide boosts methanol oxidation. Small 18, 2107803.
DOI
[93]

Chen, L., Zhou, L. Z., Lu, H. B., Zhou, Y. Q., Huang, J. L., Wang, J., Wang, Y., Yuan, X. L., Yao, Y. (2020). Shape-controlled synthesis of planar PtPb nanoplates for highly efficient methanol electro-oxidation reaction. Chem. Commun. 56, 9138–9141.

[94]
Sun, Y. J., Liang, Y. X., Luo, M. C., Lv, F., Qin, Y. N., Wang, L., Xu, C., Fu, E. G., Guo, S. J. (2018). Defects and interfaces on PtPb nanoplates boost fuel cell electrocatalysis. Small 14, 1702259.
DOI
[95]

Fu, X. B., Li, H. J., Xu, A. N., Xia, F. J., Zhang, L., Zhang, J. H., Ma, D. S., Wu, J. S., Yue, Q., Yang, X., et al. (2023). Phase engineering of intermetallic PtBi2 nanoplates for formic acid electrochemical oxidation. Nano Lett. 23, 5467–5474.

[96]

Shao, M. H., Chang, Q. W., Dodelet, J. P., Chenitz, R. (2016). Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116, 3594–3657.

[97]
Hunt, S. T., Milina, M., Alba-Rubio, A. C., Hendon, C. H., Dumesic, J. A., Román-Leshkov, Y. (2016). Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 352, 974–978.
DOI
[98]

Wang, X., Choi, S. I., Roling, L. T., Luo, M., Ma, C., Zhang, L., Chi, M. F., Liu, J. Y., Xie, Z. X., Herron, J. A., et al. (2015). Palladium–platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat. Commun. 6, 7594.

[99]

Chen, Y. J., Pei, J. J., Chen, Z., Li, A., Ji, S. F., Rong, H. P., Xu, Q., Wang, T., Zhang, A. J., Tang, H. L., et al. (2022). Pt atomic layers with tensile strain and rich defects boost ethanol electrooxidation. Nano Lett. 22, 7563–7571.

[100]

Rizo, R., Arán-Ais, R. M., Padgett, E., Muller, D. A., Lázaro, M. J., Solla-Gullón, J., Feliu, J. M., Pastor, E., Abruña, H. D. (2018). Pt-richcore/Sn-richsubsurface/Ptskin nanocubes as highly active and stable electrocatalysts for the ethanol oxidation reaction. J. Am. Chem. Soc. 140, 3791–3797.

[101]

Liu, Z. F., Jackson, G. S., Eichhorn, B. W. (2010). PtSn intermetallic, core–shell, and alloy nanoparticles as CO-tolerant electrocatalysts for H2 oxidation. Angew. Chem. 122, 3241–3244.

[102]

Li, M. G., Zhao, Z. L., Xia, Z. H., Luo, M. C., Zhang, Q. H., Qin, Y. N., Tao, L., Yin, K., Chao, Y. G., Gu, L., et al. (2021). Exclusive strain effect boosts overall water splitting in PdCu/Ir core/shell nanocrystals. Angew. Chem. Int. Ed. 60, 8243–8250.

[103]

Liu, D. Y., Zeng, Q., Hu, C. Q., Liu, H., Chen, D., Han, Y. S., Xu, L., Yang, J. (2022). Core–shell CuPd@NiPd nanoparticles: coupling lateral strain with electronic interaction toward high-efficiency electrocatalysis. ACS Catal. 12, 9092–9100.

[104]

Marković, N. M., Adžić, R. R., Cahan, B. D., Yeager, E. B. (1994). Structural effects in electrocatalysis: oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions. J. Electroanal. Chem. 377, 249–259.

[105]

Chen, Z. X., Liu, C. B., Zhao, X. X., Yan, H., Li, J., Lyu, P., Du, Y. H., Xi, S. B., Chi, K., Chi, X., et al. (2019). Promoted glycerol oxidation reaction in an interface-confined hierarchically structured catalyst. Adv. Mater. 31, 1804763.

[106]

Wang, X. P., Xi, S. B., Lee, W. S. V., Huang, P. R., Cui, P., Zhao, L., Hao, W. C., Zhao, X. S., Wang, Z. B., Wu, H. J., et al. (2020). Materializing efficient methanol oxidation via electron delocalization in nickel hydroxide nanoribbon. Nat. Commun. 11, 4647.

[107]

Zhou, M., Liu, J. W., Ling, C. Y., Ge, Y. Y., Chen, B., Tan, C. L., Fan, Z. X., Huang, J. T., Chen, J. Z., Liu, Z. Q., et al. (2022). Synthesis of Pd3Sn and PdCuSn nanorods with L12 phase for highly efficient electrocatalytic ethanol oxidation. Adv. Mater. 34, 2106115.

[108]

Zhao, F. L., Zheng, L. R., Yuan, Q., Yang, X. T., Zhang, Q. H., Xu, H., Guo, Y. L., Yang, S., Zhou, Z. Y., Gu, L., et al. (2021). Ultrathin PdAuBiTe nanosheets as high-performance oxygen reduction catalysts for a direct methanol fuel cell device. Adv. Mater. 33, 2103383.

[109]

Sheng, J. L., Kang, J. H., Ye, H. Q., Xie, J. Q., Zhao, B., Fu, X. Z., Yu, Y., Sun, R., Wong, C. P. (2018). Porous octahedral PdCu nanocages as highly efficient electrocatalysts for the methanol oxidation reaction. J. Mater. Chem. A. 6, 3906–3912.

[110]

Li, J. S., Luo, Z. S., Zuo, Y., Liu, J. F., Zhang, T., Tang, P. Y., Arbiol, J., Llorca, J., Cabot, A. (2018). NiSn bimetallic nanoparticles as stable electrocatalysts for methanol oxidation reaction. Appl. Catal. B: Environ. 234, 10–18.

[111]

Du, X. W., Luo, S. P., Du, H. Y., Tang, M., Huang, X. D., Shen, P. K. (2016). Monodisperse and self-assembled Pt-Cu nanoparticles as an efficient electrocatalyst for the methanol oxidation reaction. J. Mater. Chem. A. 4, 1579–1585.

[112]

Huang, L., Zhang, X. P., Han, Y. J., Wang, Q. Q., Fang, Y. X., Dong, S. J. (2017). High-index facets bounded platinum–lead concave nanocubes with enhanced electrocatalytic properties. Chem. Mater. 29, 4557–4562.

[113]

Yuda, A., Ashok, A., Kumar, A. (2022). A comprehensive and critical review on recent progress in anode catalyst for methanol oxidation reaction. Catal. Rev. 64, 126–228.

[114]

Yang, X. T., Yao, K. X., Ye, J. Y., Yuan, Q., Zhao, F. L., Li, Y. F., Zhou, Z. Y. (2021). Interface-rich three-dimensional au-doped PtBi intermetallics as highly effective anode catalysts for application in alkaline ethylene glycol fuel cells. Adv. Funct. Mater. 31, 2103671.

[115]

Zhang, J. X., Yuan, M. L., Zhao, T. K., Wang, W. B., Huang, H. Y., Cui, K. R., Liu, Z. J., Li, S. W., Li, Z. H., Zhang, G. J. (2021). Cu-incorporated PtBi intermetallic nanofiber bundles enhance alcohol oxidation electrocatalysis with high CO tolerance. J. Mater. Chem. A. 9, 20676–20684.

[116]

Liu, L. B., Tang, C. Y., Bu, L. Z., Xiao, X. H., Huang, X. Q. (2022). Two-dimensional PtPb-PbS heterostructure enables improved kinetics and highlighted bifunctional antipoisoning for methanol electrooxidation. Sci. China Chem. 65, 1112–1121.

[117]

Fu, X. B., Zhang, J. H., Zhan, S. Q., Xia, F. J., Wang, C. J., Ma, D. S., Yue, Q., Wu, J. S., Kang, Y. J. (2022). High-entropy alloy nanosheets for fine-tuning hydrogen evolution. ACS Catal. 12, 11955–11959.

[118]

Bai, S. X., Xu, Y., Cao, K. L., Huang, X. Q. (2021). Selective ethanol oxidation reaction at the Rh–SnO2 interface. Adv. Mater. 33, 2005767.

[119]

Wang, Y., Zheng, M., Sun, H., Zhang, X., Luan, C. L., Li, Y. R., Zhao, L., Zhao, H. H., Dai, X. P., Ye, J. Y., et al. (2019). Catalytic Ru containing Pt3Mn nanocrystals enclosed with high-indexed facets: Surface alloyed Ru makes Pt more active than Ru particles for ethylene glycol oxidation. Appl. Catal. B: Environ. 253, 11–20.

[120]

Chang, Q. W., Kattel, S., Li, X., Liang, Z. X., Tackett, B. M., Denny, S. R., Zhang, P., Su, D., Chen, J. G., Chen, Z. (2019). Enhancing C–C bond scission for efficient ethanol oxidation using PtIr nanocube electrocatalysts. ACS Catal. 9, 7618–7625.

[121]

Christensen, P. A., Jones, S. W. M., Hamnett, A. (2013). An in situ FTIR spectroscopic study of the electrochemical oxidation of ethanol at a Pb-modified polycrystalline Pt electrode immersed in aqueous KOH. Phys. Chem. Chem. Phys. 15, 17268–17276.

[122]

Hong, J. W., Kim, Y., Wi, D. H., Lee, S., Lee, S. U., Lee, Y. W., Choi, S. I., Han, S. W. (2016). Ultrathin free-standing ternary-alloy nanosheets. Angew. Chem. Int. Ed. 55, 2753–2758.

[123]
Miesse, C. M., Jung, W. S., Jeong, K. J., Lee, J. K., Lee, J., Han, J., Yoon, S. P., Nam, S. W., Lim, T. H., Hong, S. A. (2006). Direct formic acid fuel cell portable power system for the operation of a laptop computer. J. Power Sources 162, 532–540.
DOI
[124]
Ong, B. C., Kamarudin, S. K., Basri, S. (2017). Direct liquid fuel cells: a review. Int. J. Hydrogen Energy 42, 10142–10157.
DOI
[125]

Huang, B., Ge, Y. Y., Zhang, A., Zhu, S. Q., Chen, B., Li, G. X., Yun, Q. B., Huang, Z. Q., Shi, Z. Y., Zhou, X. C., et al. (2023). Seeded synthesis of hollow PdSn intermetallic nanomaterials for highly efficient electrocatalytic glycerol oxidation. Adv. Mater. 35, 2302233.

[126]

Cheng, H. F., Yang, N. L., Lu, Q. P., Zhang, Z. C., Zhang, H. (2018). Syntheses and properties of metal nanomaterials with novel crystal phases. Adv. Mater. 30, 1707189.

[127]

Chen, Y., Lai, Z. C., Zhang, X., Fan, Z. X., He, Q. Y., Tan, C. L., Zhang, H. (2020). Phase engineering of nanomaterials. Nat. Rev. Chem. 4, 243–256.

[128]
Yu, X. W., Pickup, P. G. (2008). Recent advances in direct formic acid fuel cells (DFAFC). J. Power Sources 182, 124–132.
DOI
[129]

Jiang, K., Zhang, H. X., Zou, S. Z., Cai, W. B. (2014). Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications. Phys. Chem. Chem. Phys. 16, 20360–20376.

[130]

Li, Y. J., Sun, Y. J., Qin, Y. N., Zhang, W. Y., Wang, L., Luo, M. C., Yang, H., Guo, S. J. (2020). Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Energy Mater. 10, 1903120.

[131]

Yao, Y. C., Gu, X. K., He, D. S., Li, Z. J., Liu, W., Xu, Q., Yao, T., Lin, Y., Wang, H. J., Zhao, C., et al. (2019). Engineering the electronic structure of submonolayer Pt on intermetallic Pd3Pb via charge transfer boosts the hydrogen evolution reaction. J. Am. Chem. Soc. 141, 19964–19968.

[132]
Parthasarathy, P., Virkar, A. V. (2013). Electrochemical Ostwald ripening of Pt and Ag catalysts supported on carbon. J. Power Sources 234, 82–90.
DOI
[133]

Wu, G., Zheng, X. S., Cui, P. X., Jiang, H. Y., Wang, X. Q., Qu, Y. T., Chen, W. X., Lin, Y., Li, H., Han, X., et al. (2019). A general synthesis approach for amorphous noble metal nanosheets. Nat. Commun. 10, 4855.

[134]
El-Nagar, G. A., Lauermann, I., Sarhan, R. M., Roth, C. (2018). Hierarchically structured iron-doped silver (Ag–Fe) lotus flowers for an efficient oxygen reduction reaction. Nanoscale 10, 7304–7310.
DOI
[135]

Gao, F., Zhang, Y. P., Zou, B., Jiang, F. X., Li, Z. L., Du, Y. K. (2022). Facile synthesis of low-dimensional PdPt nanocrystals for high-performance electrooxidation of C2 alcohols. J. Colloid Interface Sci. 610, 271–279.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 09 September 2023
Revised: 19 October 2023
Accepted: 21 October 2023
Published: 26 October 2023
Issue date: October 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Q. L. acknowledges financial support from the National Natural Science Foundation of China (No. 92061119), the Beijing NOVA program (Nos. Z201100006820066 and 20220484172), the Fundamental Research Funds for the Central Universities (No. GJRC003), and the Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515140051).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return