Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
As a unique two-dimensional (2D) material, 2D noble metal-based intermetallic compounds (IMCs) have attracted much attention in electrocatalysis owing to their exceptional physical and chemical properties. However, the synthesis of 2D noble metal-based IMCs with well-defined structures remains challenging. This comprehensive review begins by delving into the morphology modulation of 2D noble metal-based IMCs, highlighting their key synthesis strategies, such as the CO-assisted and halide ion modulation methods. Subsequently, we discuss the advantages of 2D noble metal-based IMCs in electrocatalysis, including oxygen reduction reaction, alcohol oxidation reaction, formic acid oxidation reaction, and hydrogen evolution reaction. Finally, the main challenges and perspectives for the future development of 2D noble metal-based IMC electrocatalysts are presented to accelerate their promising commercialization.
Lelieveld, J., Klingmüller, K., Pozzer, A., Burnett, R. T., Haines, A., Ramanathan, V. (2019). Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc. Natl. Acad. Sci. USA. 116, 7192–7197.
Zhu, C. Z., Li, H., Fu, S. F., Du, D., Lin, Y. H. (2016). Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 45, 517–531.
Jiao, Y., Zheng, Y., Jaroniec, M., Qiao, S. Z. (2015). Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086.
Zhu, J., Hu, L. S., Zhao, P. X., Lee, L. Y. S., Wong, K. Y. (2020). Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 120, 851–918.
Ren, X. F., Liu, B. H., Liang, X. Y., Wang, Y. R., Lv, Q. Y., Liu, A. M. (2021). Review-current progress of non-precious metal for ORR Based electrocatalysts used for fuel cells. J. Electrochem. Soc. 168, 044521.
Zhang, Y. P., Gao, F., You, H. M., Li, Z. L., Zou, B., Du, Y. K. (2022). Recent advances in one-dimensional noble-metal-based catalysts with multiple structures for efficient fuel-cell electrocatalysis. Coord. Chem. Rev. 450, 214244.
Kim, H., Yoo, T. Y., Bootharaju, M. S., Kim, J. H., Chung, D. Y., Hyeon, T. (2022). Noble metal-based multimetallic nanoparticles for electrocatalytic applications. Adv. Sci. 9, 2104054.
Trindell, J. A., Duan, Z. Y., Henkelman, G., Crooks, R. M. (2020). Well-defined nanoparticle electrocatalysts for the refinement of theory. Chem. Rev. 120, 814–850.
Yang, T. H., Ahn, J., Shi, S., Wang, P., Gao, R. Q., Qin, D. (2021). Noble-metal nanoframes and their catalytic applications. Chem. Rev. 121, 796–833.
Liu, L. C., Corma, A. (2018). Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079.
Zhu, D. L., Zhao, H. D., Wang, B., Yang, S. C. (2022). Synthesis and electrocatalytic performance of ultrathin noble metal nanosheets. CrystEngComm. 24, 1319–1333.
Yang, N. L., Cheng, H. F., Liu, X. Z., Yun, Q. B., Chen, Y., Li, B., Chen, B., Zhang, Z. C., Chen, X. P., Lu, Q. P., et al. (2018). Amorphous/crystalline hetero-phase Pd nanosheets: one-pot synthesis and highly selective hydrogenation reaction. Adv. Mater. 30, 1803234.
Chhetri, M., Rana, M., Loukya, B., Patil, P. K., Datta, R., Gautam, U. K. (2015). Mechanochemical synthesis of free-standing platinum nanosheets and their electrocatalytic properties. Adv. Mater. 27, 4430–4437.
Duan, H. H., Yan, N., Yu, R., Chang, C. R., Zhou, G., Hu, H. S., Rong, H. P., Niu, Z. Q., Mao, J. J., Asakura, H., et al. (2014). Ultrathin rhodium nanosheets. Nat. Commun. 5, 3093.
Zhu, J. Y., Chen, S. Q., Xue, Q., Li, F. M., Yao, H. C., Xu, L., Chen, Y. (2020). Hierarchical porous Rh nanosheets for methanol oxidation reaction. Appl. Catal. B: Environ. 264, 118520.
Cheong, W. C., Liu, C. H., Jiang, M. L., Duan, H. H., Wang, D. S., Chen, C., Li, Y. D. (2016). Free-standing palladium-nickel alloy wavy nanosheets. Nano Res. 9, 2244–2250.
Huang, W. J., Kang, X. L., Xu, C., Zhou, J. H., Deng, J., Li, Y. G., Cheng, S. (2018). 2D PdAg alloy nanodendrites for enhanced ethanol electroxidation. Adv. Mater. 30, 1706962.
Lai, J. P., Lin, F., Tang, Y. H., Zhou, P., Chao, Y. G., Zhang, Y. L., Guo, S. J. (2019). Efficient bifunctional polyalcohol oxidation and oxygen reduction electrocatalysts enabled by ultrathin PtPdM (M = Ni, Fe, Co) nanosheets. Adv. Energy Mater. 9, 1800684.
Liu, S. H., Zhang, Y. T., Mao, X. N., Li, L., Zhang, Y., Li, L. G., Pan, Y., Li, X. G., Wang, L., Shao, Q., et al. (2022). Ultrathin perovskite derived Ir-based nanosheets for high-performance electrocatalytic water splitting. Energy Environ. Sci. 15, 1672–1681.
Fan, J. C., Yu, S. S., Qi, K., Liu, C., Zhang, L., Zhang, H. Y., Cui, X. Q., Zheng, W. T. (2018). Synthesis of ultrathin wrinkle-free PdCu alloy nanosheets for modulating d-band electrons for efficient methanol oxidation. J. Mater. Chem. A. 6, 8531–8536.
Wang, W., Zhang, X., Zhang, Y. H., Chen, X. W., Ye, J. Y., Chen, J. Y., Lyu, Z. X., Chen, X. J., Kuang, Q., Xie, S. F., et al. (2020). Edge enrichment of ultrathin 2D PdPtCu trimetallic nanostructures effectuates top-ranked ethanol electrooxidation. Nano Lett. 20, 5458–5464.
Luo, X. L., Liu, C., Wang, X. L., Shao, Q., Pi, Y. C., Zhu, T., Li, Y. Y., Huang, X. Q. (2020). Spin regulation on 2D Pd–Fe–Pt nanomeshes promotes fuel electrooxidations. Nano Lett. 20, 1967–1973.
Mahmood, A., Lin, H. F., Xie, N. H., Wang, X. (2017). Surface confinement etching and polarization matter: a new approach to prepare ultrathin PtAgCo nanosheets for hydrogen-evolution reactions. Chem. Mater. 29, 6329–6335.
Zhou, M., Li, C., Fang, J. Y. (2021). Noble-metal based random alloy and intermetallic nanocrystals: syntheses and applications. Chem. Rev. 121, 736–795.
Yu, Q., Yang, Y. (2020). Synthesis of two-dimensional metallic nanosheets: from elemental metals to chemically complex alloys. ChemNanoMat. 6, 1683–1711.
Cheng, N. N., Starkewolf, Z., Davidson, R. A., Sharmah, A., Lee, C., Lien, J., Guo, T. (2012). Chemical enhancement by nanomaterials under X-ray irradiation. J. Am. Chem. Soc. 134, 1950–1953.
Han, S. M., He, C. H., Yun, Q. B., Li, M. Y., Chen, W., Cao, W. B., Lu, Q. P. (2021). Pd-based intermetallic nanocrystals: from precise synthesis to electrocatalytic applications in fuel cells. Coord. Chem. Rev. 445, 214085.
Gao, L., Li, X. X., Yao, Z. Y., Bai, H. J., Lu, Y. F., Ma, C., Lu, S. F., Peng, Z. M., Yang, J. L., Pan, A., et al. (2019). Unconventional p–d hybridization interaction in PtGa ultrathin nanowires boosts oxygen reduction electrocatalysis. J. Am. Chem. Soc. 141, 18083–18090.
Fan, Z. X., Luo, Z. M., Huang, X., Li, B., Chen, Y., Wang, J., Hu, Y. L., Zhang, H. (2016). Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 138, 1414–1419.
Rezaei, M., Tabaian, S. H., Haghshenas, D. F. (2014). Electrochemical nucleation and growth of Pd/PdCo core–shell nanoparticles with enhanced activity and durability as fuel cell catalyst. J. Mater. Chem. A. 2, 4588–4597.
Xia, Y. N., Xia, X. H., Peng, H. C. (2015). Shape-controlled synthesis of colloidal metal nanocrystals: thermodynamic versus kinetic products. J. Am. Chem. Soc. 137, 7947–7966.
Zhang, J. T., Liu, X. Z., Ji, Y. J., Liu, X. R., Su, D., Zhuang, Z. B., Chang, Y. C., Pao, C. W., Shao, Q., Hu, Z. W., et al. (2023). Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis. Nat. Commun. 14, 1761.
Li, C. L., Gao, F., Ren, Y. Y., Li, B. S., Li, L. L., Lu, Z. M., Yang, X. J., Zhang, X. H., Yu, X. F. (2022). PtPdMo nanosheets with controllable synthesis for enhanced oxygen reduction reactions. ACS Appl. Nano Mater. 5, 1192–1199.
Liu, S. L., Zhang, H. G., Yu, H. J., Deng, K., Wang, Z. Q., Xu, Y., Wang, L., Wang, H. J. (2023). Tailored design of PdRh bimetallene nanoribbons by solvent-induced strategy for efficient alkaline hydrogen evolution. Appl. Catal. B: Environ. 336, 122948.
Sun, Y. J., Chen, W. B., Zhang, W. S., Nie, Y., Zhang, Q. H., Gu, L., Luo, M. C., Guo, S. J. (2023). Trimetallic porous PtIrBi nanoplates with robust CO tolerance for enhanced formic acid oxidation catalysis. Adv. Funct. Mater. 33, 2303299.
Guo, K., Fan, D. P., Teng, Y. X., Xu, D. D., Li, Y. F., Bao, J. C. (2022). Engineering PdIr nanostructures synergistically induced by self-assembled surfactants and halide ions for alcohol electrooxidation. Chem. Eur. J. 28, e202200053.
Kelleppan, V. T., King, J. P., Butler, C. S. G., Williams, A. P., Tuck, K. L., Tabor, R. F. (2021). Heads or tails? The synthesis, self-assembly, properties and uses of betaine and betaine-like surfactants. Adv. Colloid Interface Sci. 297, 102528.
Yang, T. H., Shi, Y. F., Janssen, A., Xia, Y. N. (2020). Surface capping agents and their roles in shape-controlled synthesis of colloidal metal nanocrystals. Angew. Chem. Int. Ed. 59, 15378–15401.
Kang, Y. J., Ye, X. C., Murray, C. B. (2010). Size-and shape-selective synthesis of metal nanocrystals and nanowires using CO as a reducing. Agent. Angew. 122, 6292–6295.
Hu, C. Y., Mu, X. L., Fan, J. M., Ma, H. B., Zhao, X. J., Chen, G. X., Zhou, Z. Y., Zheng, N. F. (2016). Interfacial effects in PdAg bimetallic nanosheets for selective dehydrogenation of formic acid. ChemNanoMat. 2, 28–32.
Luo, S. P., Chen, W., Cheng, Y., Song, X., Wu, Q. L., Li, L. X., Wu, X. T., Wu, T. H., Li, M. R., Yang, Q., et al. (2019). Trimetallic synergy in intermetallic PtSnBi nanoplates boosts formic acid oxidation. Adv. Mater. 31, 1903683.
Zhan, C. H., Bu, L. Z., Sun, H. R., Huang, X. W., Zhu, Z. P., Yang, T., Ma, H. B., Li, L. G., Wang, Y. C., Geng, H. B., et al. (2023). Medium/high-entropy amalgamated core/shell nanoplate achieves efficient formic acid catalysis for direct formic acid fuel cell. Angew. Chem. Int. Ed. 62, e202213783.
Feng, Y. G., Shao, Q., Lv, F., Bu, L. Z., Guo, J., Guo, S. J., Huang, X. Q. (2020). Intermetallic PtBi nanoplates boost oxygen reduction catalysis with superior tolerance over chemical fuels. Adv. Sci. 7, 1800178.
Yun, Q. B., Lu, Q. P., Li, C. L., Chen, B., Zhang, Q. H., He, Q. Y., Hu, Z. N., Zhang, Z. C., Ge, Y. Y., Yang, N. L., et al. (2019). Synthesis of PdM (M=Zn, Cd, ZnCd) nanosheets with an unconventional face-centered tetragonal phase as highly efficient electrocatalysts for ethanol oxidation. ACS Nano. 13, 14329–14336.
Liang, J. S., Xia, Y., Liu, X., Huang, F. Y., Liu, J. J., Li, S. Z., Wang, T. Y., Jiao, S. H., Cao, R. G., et al. (2022). Molybdenum-doped ordered L10-PdZn nanosheets for enhanced oxygen reduction electrocatalysis. SusMat. 2, 347–356.
Murphy, C. J., Sau, T. K., Gole, A. M., Orendorff, C. J., Gao, J. X., Gou, L. F., Hunyadi, S. E., Li, T. (2005). Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B. 109, 13857–13870.
Niu, W. X., Zheng, S. L., Wang, D. W., Liu, X. Q., Li, H. J., Han, S., Chen, J. A., Tang, Z. Y., Xu, G. B. (2009). Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals. J. Am. Chem. Soc. 131, 697–703.
Lu, C. L., Prasad, K. S., Wu, H. L., Ho, J. A. A., Huang, M. H. (2010). Au nanocube-directed fabrication of Au−Pd core−shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity. J. Am. Chem. Soc. 132, 14546–14553.
Ranallo, S., Amodio, A., Idili, A., Porchetta, A., Ricci, F. (2016). Electronic control of DNA-based nanoswitches and nanodevices. Chem. Sci. 7, 66–71.
Liang, J. S., Li, S. Z., Chen, Y. W., Liu, X., Wang, T. Y., Han, J. T., Jiao, S. H., Cao, R. G., Li, Q. (2020). Ultrathin and defect-rich intermetallic Pd2Sn nanosheets for efficient oxygen reduction electrocatalysis. J. Mater. Chem. A. 8, 15665–15669.
Xie, L. F., Liu, X., Huang, F. Y., Liang, J. S., Liu, J. J., Wang, T. Y., Yang, L. M., Cao, R. G., Li, Q. (2022). Regulating Pd-catalysis for electrocatalytic CO2 reduction to formate via intermetallic PdBi nanosheets. Chin. J. Catal. 43, 1680–1686.
Guo, J. C., Gao, L., Tan, X., Yuan, Y. L., Kim, J., Wang, Y., Wang, H., Zeng, Y. J., Choi, S. I., Smith, S. C., et al. (2021). Template-directed rapid synthesis of Pd-based ultrathin porous intermetallic nanosheets for efficient oxygen reduction. Angew. Chem. Int. Ed. 60, 10942–10949.
Nguyen, T. D., Vo, T. T., Huynh, T. T. T., Nguyen, C. H., Doan, V. D., Nguyen, D. T., Nguyen, T. D., Dang, C. H. (2019). Effect of capping methods on the morphology of silver nanoparticles: study on the media-induced release of silver from the nanocomposite β-cyclodextrin/alginate. New J. Chem. 43, 16841–16852.
Yan, Y., Chen, K. B., Li, H. R., Hong, W., Hu, X. B., Xu, Z. (2014). Capping effect of reducing agents and surfactants in synthesizing silver nanoplates. Trans. Nonferr. Met. Soc. 24, 3732–3738.
Sui, Z. M., Chen, X., Wang, L. Y., Xu, L. M., Zhuang, W. C., Chai, Y. C., Yang, C. J. (2006). Capping effect of CTAB on positively charged Ag nanoparticles. Phys. E: Low-Dimens. Syst. Nanostructures. 33, 308–314.
Zhang, H., Jin, M. S., Wang, J. G., Li, W. Y., Camargo, P. H. C., Kim, M. J., Yang, D. R., Xie, Z. X., Xia, Y. N. (2011). Synthesis of Pd−Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. J. Am. Chem. Soc. 133, 6078–6089.
Zheng, Y. Q., Zeng, J., Ruditskiy, A., Liu, M. C., Xia, Y. N. (2014). Oxidative etching and its role in manipulating the nucleation and growth of noble-metal nanocrystals. Chem. Mater. 26, 22–33.
Zhang, Y., Liu, X. Z., Liu, T. Y., Ma, X. Y., Feng, Y. G., Xu, B. Y., Cai, W. B., Li, Y. F., Su, D., Shao, Q., et al. (2022). Rhombohedral Pd–Sb nanoplates with Pd-terminated surface: an efficient bifunctional fuel-cell catalyst. Adv. Mater. 34, 2202333.
Tang, C. Y., Zhang, N., Ji, Y. J., Shao, Q., Li, Y. Y., Xiao, X. H., Huang, X. Q. (2019). Fully tensile strained Pd3Pb/Pd tetragonal nanosheets enhance oxygen reduction catalysis. Nano Lett. 19, 1336–1342.
Qin, Y. N., Luo, M. C., Sun, Y. J., Li, C. J., Huang, B. L., Yang, Y., Li, Y. J., Wang, L., Guo, S. J. (2018). Intermetallic hcp-PtBi/fcc-Pt core/shell nanoplates enable efficient bifunctional oxygen reduction and methanol oxidation electrocatalysis. ACS Catal. 8, 5581–5590.
Xiong, L. K., Sun, Z. T., Zhang, X., Zhao, L., Huang, P., Chen, X. W., Jin, H. D., Sun, H., Lian, Y. B., Deng, Z., et al. (2019). Octahedral gold-silver nanoframes with rich crystalline defects for efficient methanol oxidation manifesting a CO-promoting effect. Nat. Commun. 10, 3782.
Huang, X. Q., Tang, S. H., Mu, X. L., Dai, Y., Chen, G. X., Zhou, Z. Y., Ruan, F. X., Yang, Z. L., Zheng, N. F. (2011). Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 6, 28–32.
Tang, M., Chen, W., Luo, S. P., Wu, X. T., Fan, X. K., Liao, Y. J., Song, X., Cheng, Y., Li, L. X., Tan, L., et al. (2021). Trace Pd modified intermetallic PtBi nanoplates towards efficient formic acid electrocatalysis. J. Mater. Chem. A. 9, 9602–9608.
Wang, K., Du, H. Y., Sriphathoorat, R., Shen, P. K. (2018). Vertex-type engineering of Pt-Cu-Rh heterogeneous nanocages for highly efficient ethanol electrooxidation. Adv. Mater. 30, 1804074.
Luo, M. C., Sun, Y. J., Wang, L., Guo, S. J. (2017). Tuning multimetallic ordered intermetallic nanocrystals for efficient energy electrocatalysis. Adv. Energy Mater. 7, 1602073.
Chen, W., Luo, S. P., Sun, M. Z., Wu, X. Y., Zhou, Y. S., Liao, Y. J., Tang, M., Fan, X. K., Huang, B. L., Quan, Z. W. (2022). High-entropy intermetallic PtRhBiSnSb nanoplates for highly efficient alcohol oxidation electrocatalysis. Adv. Mater. 34, 2206276.
Chia, X. Y., Pumera, M. (2018). Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 1, 909–921.
Sun, Y. F., Gao, S., Lei, F. C., Xie, Y. (2015). Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev. 44, 623–636.
Bu, L. Z., Tang, C. Y., Shao, Q., Zhu, X., Huang, X. Q. (2018). Three-dimensional Pd3Pb nanosheet assemblies: high-performance Non-Pt electrocatalysts for bifunctional fuel cell reactions. ACS Catal. 8, 4569–4575.
Chen, L., Zhou, L. Z., Lu, H. B., Zhou, Y. Q., Huang, J. L., Wang, J., Wang, Y., Yuan, X. L., Yao, Y. (2020). Shape-controlled synthesis of planar PtPb nanoplates for highly efficient methanol electro-oxidation reaction. Chem. Commun. 56, 9138–9141.
Fu, X. B., Li, H. J., Xu, A. N., Xia, F. J., Zhang, L., Zhang, J. H., Ma, D. S., Wu, J. S., Yue, Q., Yang, X., et al. (2023). Phase engineering of intermetallic PtBi2 nanoplates for formic acid electrochemical oxidation. Nano Lett. 23, 5467–5474.
Shao, M. H., Chang, Q. W., Dodelet, J. P., Chenitz, R. (2016). Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116, 3594–3657.
Wang, X., Choi, S. I., Roling, L. T., Luo, M., Ma, C., Zhang, L., Chi, M. F., Liu, J. Y., Xie, Z. X., Herron, J. A., et al. (2015). Palladium–platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat. Commun. 6, 7594.
Chen, Y. J., Pei, J. J., Chen, Z., Li, A., Ji, S. F., Rong, H. P., Xu, Q., Wang, T., Zhang, A. J., Tang, H. L., et al. (2022). Pt atomic layers with tensile strain and rich defects boost ethanol electrooxidation. Nano Lett. 22, 7563–7571.
Rizo, R., Arán-Ais, R. M., Padgett, E., Muller, D. A., Lázaro, M. J., Solla-Gullón, J., Feliu, J. M., Pastor, E., Abruña, H. D. (2018). Pt-richcore/Sn-richsubsurface/Ptskin nanocubes as highly active and stable electrocatalysts for the ethanol oxidation reaction. J. Am. Chem. Soc. 140, 3791–3797.
Liu, Z. F., Jackson, G. S., Eichhorn, B. W. (2010). PtSn intermetallic, core–shell, and alloy nanoparticles as CO-tolerant electrocatalysts for H2 oxidation. Angew. Chem. 122, 3241–3244.
Li, M. G., Zhao, Z. L., Xia, Z. H., Luo, M. C., Zhang, Q. H., Qin, Y. N., Tao, L., Yin, K., Chao, Y. G., Gu, L., et al. (2021). Exclusive strain effect boosts overall water splitting in PdCu/Ir core/shell nanocrystals. Angew. Chem. Int. Ed. 60, 8243–8250.
Liu, D. Y., Zeng, Q., Hu, C. Q., Liu, H., Chen, D., Han, Y. S., Xu, L., Yang, J. (2022). Core–shell CuPd@NiPd nanoparticles: coupling lateral strain with electronic interaction toward high-efficiency electrocatalysis. ACS Catal. 12, 9092–9100.
Marković, N. M., Adžić, R. R., Cahan, B. D., Yeager, E. B. (1994). Structural effects in electrocatalysis: oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions. J. Electroanal. Chem. 377, 249–259.
Chen, Z. X., Liu, C. B., Zhao, X. X., Yan, H., Li, J., Lyu, P., Du, Y. H., Xi, S. B., Chi, K., Chi, X., et al. (2019). Promoted glycerol oxidation reaction in an interface-confined hierarchically structured catalyst. Adv. Mater. 31, 1804763.
Wang, X. P., Xi, S. B., Lee, W. S. V., Huang, P. R., Cui, P., Zhao, L., Hao, W. C., Zhao, X. S., Wang, Z. B., Wu, H. J., et al. (2020). Materializing efficient methanol oxidation via electron delocalization in nickel hydroxide nanoribbon. Nat. Commun. 11, 4647.
Zhou, M., Liu, J. W., Ling, C. Y., Ge, Y. Y., Chen, B., Tan, C. L., Fan, Z. X., Huang, J. T., Chen, J. Z., Liu, Z. Q., et al. (2022). Synthesis of Pd3Sn and PdCuSn nanorods with L12 phase for highly efficient electrocatalytic ethanol oxidation. Adv. Mater. 34, 2106115.
Zhao, F. L., Zheng, L. R., Yuan, Q., Yang, X. T., Zhang, Q. H., Xu, H., Guo, Y. L., Yang, S., Zhou, Z. Y., Gu, L., et al. (2021). Ultrathin PdAuBiTe nanosheets as high-performance oxygen reduction catalysts for a direct methanol fuel cell device. Adv. Mater. 33, 2103383.
Sheng, J. L., Kang, J. H., Ye, H. Q., Xie, J. Q., Zhao, B., Fu, X. Z., Yu, Y., Sun, R., Wong, C. P. (2018). Porous octahedral PdCu nanocages as highly efficient electrocatalysts for the methanol oxidation reaction. J. Mater. Chem. A. 6, 3906–3912.
Li, J. S., Luo, Z. S., Zuo, Y., Liu, J. F., Zhang, T., Tang, P. Y., Arbiol, J., Llorca, J., Cabot, A. (2018). NiSn bimetallic nanoparticles as stable electrocatalysts for methanol oxidation reaction. Appl. Catal. B: Environ. 234, 10–18.
Du, X. W., Luo, S. P., Du, H. Y., Tang, M., Huang, X. D., Shen, P. K. (2016). Monodisperse and self-assembled Pt-Cu nanoparticles as an efficient electrocatalyst for the methanol oxidation reaction. J. Mater. Chem. A. 4, 1579–1585.
Huang, L., Zhang, X. P., Han, Y. J., Wang, Q. Q., Fang, Y. X., Dong, S. J. (2017). High-index facets bounded platinum–lead concave nanocubes with enhanced electrocatalytic properties. Chem. Mater. 29, 4557–4562.
Yuda, A., Ashok, A., Kumar, A. (2022). A comprehensive and critical review on recent progress in anode catalyst for methanol oxidation reaction. Catal. Rev. 64, 126–228.
Yang, X. T., Yao, K. X., Ye, J. Y., Yuan, Q., Zhao, F. L., Li, Y. F., Zhou, Z. Y. (2021). Interface-rich three-dimensional au-doped PtBi intermetallics as highly effective anode catalysts for application in alkaline ethylene glycol fuel cells. Adv. Funct. Mater. 31, 2103671.
Zhang, J. X., Yuan, M. L., Zhao, T. K., Wang, W. B., Huang, H. Y., Cui, K. R., Liu, Z. J., Li, S. W., Li, Z. H., Zhang, G. J. (2021). Cu-incorporated PtBi intermetallic nanofiber bundles enhance alcohol oxidation electrocatalysis with high CO tolerance. J. Mater. Chem. A. 9, 20676–20684.
Liu, L. B., Tang, C. Y., Bu, L. Z., Xiao, X. H., Huang, X. Q. (2022). Two-dimensional PtPb-PbS heterostructure enables improved kinetics and highlighted bifunctional antipoisoning for methanol electrooxidation. Sci. China Chem. 65, 1112–1121.
Fu, X. B., Zhang, J. H., Zhan, S. Q., Xia, F. J., Wang, C. J., Ma, D. S., Yue, Q., Wu, J. S., Kang, Y. J. (2022). High-entropy alloy nanosheets for fine-tuning hydrogen evolution. ACS Catal. 12, 11955–11959.
Bai, S. X., Xu, Y., Cao, K. L., Huang, X. Q. (2021). Selective ethanol oxidation reaction at the Rh–SnO2 interface. Adv. Mater. 33, 2005767.
Wang, Y., Zheng, M., Sun, H., Zhang, X., Luan, C. L., Li, Y. R., Zhao, L., Zhao, H. H., Dai, X. P., Ye, J. Y., et al. (2019). Catalytic Ru containing Pt3Mn nanocrystals enclosed with high-indexed facets: Surface alloyed Ru makes Pt more active than Ru particles for ethylene glycol oxidation. Appl. Catal. B: Environ. 253, 11–20.
Chang, Q. W., Kattel, S., Li, X., Liang, Z. X., Tackett, B. M., Denny, S. R., Zhang, P., Su, D., Chen, J. G., Chen, Z. (2019). Enhancing C–C bond scission for efficient ethanol oxidation using PtIr nanocube electrocatalysts. ACS Catal. 9, 7618–7625.
Christensen, P. A., Jones, S. W. M., Hamnett, A. (2013). An in situ FTIR spectroscopic study of the electrochemical oxidation of ethanol at a Pb-modified polycrystalline Pt electrode immersed in aqueous KOH. Phys. Chem. Chem. Phys. 15, 17268–17276.
Hong, J. W., Kim, Y., Wi, D. H., Lee, S., Lee, S. U., Lee, Y. W., Choi, S. I., Han, S. W. (2016). Ultrathin free-standing ternary-alloy nanosheets. Angew. Chem. Int. Ed. 55, 2753–2758.
Huang, B., Ge, Y. Y., Zhang, A., Zhu, S. Q., Chen, B., Li, G. X., Yun, Q. B., Huang, Z. Q., Shi, Z. Y., Zhou, X. C., et al. (2023). Seeded synthesis of hollow PdSn intermetallic nanomaterials for highly efficient electrocatalytic glycerol oxidation. Adv. Mater. 35, 2302233.
Cheng, H. F., Yang, N. L., Lu, Q. P., Zhang, Z. C., Zhang, H. (2018). Syntheses and properties of metal nanomaterials with novel crystal phases. Adv. Mater. 30, 1707189.
Chen, Y., Lai, Z. C., Zhang, X., Fan, Z. X., He, Q. Y., Tan, C. L., Zhang, H. (2020). Phase engineering of nanomaterials. Nat. Rev. Chem. 4, 243–256.
Jiang, K., Zhang, H. X., Zou, S. Z., Cai, W. B. (2014). Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications. Phys. Chem. Chem. Phys. 16, 20360–20376.
Li, Y. J., Sun, Y. J., Qin, Y. N., Zhang, W. Y., Wang, L., Luo, M. C., Yang, H., Guo, S. J. (2020). Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Energy Mater. 10, 1903120.
Yao, Y. C., Gu, X. K., He, D. S., Li, Z. J., Liu, W., Xu, Q., Yao, T., Lin, Y., Wang, H. J., Zhao, C., et al. (2019). Engineering the electronic structure of submonolayer Pt on intermetallic Pd3Pb via charge transfer boosts the hydrogen evolution reaction. J. Am. Chem. Soc. 141, 19964–19968.
Wu, G., Zheng, X. S., Cui, P. X., Jiang, H. Y., Wang, X. Q., Qu, Y. T., Chen, W. X., Lin, Y., Li, H., Han, X., et al. (2019). A general synthesis approach for amorphous noble metal nanosheets. Nat. Commun. 10, 4855.
Gao, F., Zhang, Y. P., Zou, B., Jiang, F. X., Li, Z. L., Du, Y. K. (2022). Facile synthesis of low-dimensional PdPt nanocrystals for high-performance electrooxidation of C2 alcohols. J. Colloid Interface Sci. 610, 271–279.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.